Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Yan_Shrayber_-_vse_3.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
8.77 Mб
Скачать

Подведем итоги

На этой неделе мы учились рассчитывать интранзитивные механики с помощью математики. Наверное, это самое сложное из того, что мы с вами вообще делали, поскольку сводит воедино кривые стоимости транзитивных механик, вероятность и статистику, и именно поэтому я рассмотрел этот вопрос только после предыдущих лекций! Для решения подобных задач вам нужно следовать такому алгоритму:

— Составьте таблицу выигрышей.

— Избавьтесь от всех выборов, над которыми доминируют другие, у обоих игроков (сравнив комбинации строк и столбцов и проверив, не содержит ли какая-нибудь из пар столбец или строку, которые больше подходят или равны другим). Продолжайте делать это, пока не останутся только жизнеспособные варианты.

— Найдите все непереходные «петли», найдя лучший ответный ход на первый ход каждого игрока.

— Рассчитайте выигрыши для каждого выбора одного из игроков, приравняв выигрыши к одной переменной Х. В игре с нулевой суммой Х одного игрока будет отрицательным Х другого игрока. В симметричной игре Х равен нулю, так что просто приравняйте все выигрыши к нулю.

— Добавьте еще одно уравнение, которое сведет сумму вероятностей всех выборов к 1.

— Используя алгебраическую замену, треугольные матрицы, Excel или любые другие имеющиеся в вашем распоряжении средства, решите так много переменных, сколько сможете. Если вам удастся найти значение Х, вы найдете ожидаемый выигрыш (или проигрыш) игрока. Сложив значения Х всех игроков, вы поймете, какая у вас игра: с нулевой суммой (X1+X2+…=0), с положительной (>0) или отрицательной (<0), и насколько она такова.

— Если вы найдете уникальное значение каждого выбора в диапазоне от 0 до 1, вы найдете оптимальные вероятности выбора каждой фигуры. Для асимметричных игр вам нужно будет сделать это отдельно для каждого игрока. Это и будет вашим решением.

— Для игр, в которых более двоих игроков делают одинаковый выбор, выберите одного игрока и делайте расчеты с его точки зрения. Считайте всех противников одним игроком. С каждым игроком, которого вы добавляете к двоим первоначальным, расчеты будут все сложнее. В конце концов, когда у вас всего лишь два игрока, уравнения линейны; если игроков трое – уравнения будут квадратными, четверо – кубические, если у вас пятеро игроков, вы будете решать уравнения четвертой степени и так далее.

Также стоит отметить, что игровая теория весьма обширна, и очень многие виды игр, рассматриваемые в ее рамках, я здесь не упоминал. В частности, также возможно анализировать игры, где игроки делают выбор поочередно, а не одновременно, а также игры, где участники заранее договариваются о чем-то, просят или угрожают, координируют ходы и так далее (пример – игры с позитивной суммой, где два игрока могут обменяться предметами или скооперироваться против других игроков). Это в пределы данного курса не входит, но, если вам интересно, я приведу несколько ссылок в конце статьи.

Если вы сейчас работаете над игрой…

Подумайте о вашей игре и о том, есть ли в ней непереходные механики. Если их нет, спросите себя, есть ли какая-нибудь возможность или необходимость взять некоторые транзитивные механики и сделать их интранзитивными (к примеру, если вы работаете над РПГ, может, вместо того, чтобы просто сделать серию оружия, где каждый предмет лучше предыдущего, стоит в какой-то момент дать игроку на выбор несколько предметов вооружения, которые одинаково хороши, но их особые преимущества проявляются в разных ситуациях).

Если же у вас в игре есть непереходные механики, возьмите наиболее яркий пример и проанализируйте его так, как мы сегодня. Есть ли среди вариантов, которые вы даете игроку, доминирующие или те, над которыми доминируют? Если предположить, что игра проходится оптимально, насколько часто ожидается выбор игроком именно того или иного варианта? Этого вы и ожидали? Этого ли результата вы добивались?

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]