Устройство
В отличие от навесного монтажа, на печатной плате электропроводящий рисунок выполнен из фольги, целиком расположенной на твердой изолирующей основе. Печатная плата содержит монтажные отверстия и контактные площадки для монтажа выводных или планарных компонентов. Кроме того, в печатных платах имеются переходные отверстия для электрического соединения участков фольги, расположенных на разных слоях платы. С внешних сторон на плату обычно нанесены защитное покрытие («паяльная маска») и маркировка (вспомогательный рисунок и текст согласно конструкторской документации).
Виды печатных плат
В зависимости от количества слоёв с электропроводящим рисунком, печатные платы подразделяют на:
односторонние (ОПП): имеется только один слой фольги, наклеенной на одну сторону листа диэлектрика.
двухсторонние (ДПП): два слоя фольги.
многослойные (МПП): фольга не только на двух сторонах платы но и во внутренних слоях диэлектрика. Многослойные печатные платы, получаются склеиванием нескольких односторонних или двухсторонних плат[1]
По мере роста сложности проектируемых устройств и плотности монтажа, увеличивается количество слоёв на платах[1].
По свойствам материала основы:
Жёсткие
Теплопроводные
Гибкие
Гибкая печа́тная пла́та — это один или более слоев диэлектрика, на котором сформирована хотя бы одна электропроводящая цепь (электронная схема). Она предназначена для соединения отдельных электронных элементов или узлов в единое действующее устройство. Гибкие печатные платы могут свободно изгибаться, что позволяет осуществлять монтаж в труднодоступных местах, а также использовать их в качестве гибких соединителей. Гибкие печатные платы позволяют увеличить плотность монтажа в электронных устройствах.
Гибкие печатные платы разнообразны в своих конструкциях и применениях. Тенденция к дальнейшему расширению их использования обусловливается большими преимуществами, которые они создают в технике межсоединений. Сейчас они стали очень привлекательным способом обеспечения межсоединений в современной электронной аппаратуре.
Преимущества гибких печатных плат
В таблице 1 приведены примеры использования гибких печатных плат в различных отраслях приборостроения [1].
Таблица 1. Примеры использования гибких печатных плат
Существует много причин использования гибких печатных плат в качестве средства межсоединений в электронных устройствах. В некоторых случаях, когда необходима устойчивость гибких печатных плат к динамическим нагрузкам, использование гибких печатных плат очевидно. По крайней мере, в этом они не имеют альтернативы. Намного больше других областей использования гибких печатных плат, в которых они помогают решить проблемы уплотнения компоновки аппаратуры [1–3].
Уменьшение габаритов
Гибкие печатные платы используют самое тонкое диэлектрическое основание из всех доступных сегодня материалов, предназначенных для создания межсоединений. В некоторых случаях из этих материалов можно изготовить гибкие печатные платы, имеющие полную толщину меньше 50 мкм, включая защитный слой. Для справки: жесткие монтажные подложки с той же функциональностью оказываются в два раза толще.
Мало того, что малая толщина гибких печатных плат привлекательна сама по себе, возможность ее складывать за счет гибкости также позволяет сокращать объемы и габариты электронных устройств.
Уменьшение массы
Дополнительное преимущество малой толщины гибких печатных плат — малая масса. Сами по себе они легче аналогичных жестких печатных плат на 75%.
Малая масса межсоединений, реализуемая гибкими печатными платами, оказалась настолько привлекательной в аэрокосмической аппаратуре, что эта область их использования стала конкурировать по объемам производства с портативной электроникой.
Уменьшение времени и стоимости сборки
Гибкие печатные платы олицетворяют простую и быструю технологию создания межсоединений для узлов и блоков электронной аппаратуры. Альтернатива гибким печатным платам — проводной монтаж и гибкие кабели — связаны с необходимостью прокладки проводов по намеченным трассам соединений и их закрепления, зачистки и пайки каждого провода по отдельности. Жгутовой проводной монтаж требует еще и дополнительных трудозатрат на обозначение адресов связей.
Гибкие печатные платы дают возможность использования групповых методов сборки и монтажа изделий. Кроме того, само их изготовление намного дешевле благодаря использованию групповых технологий изготовления и маркировки.
Уменьшение ошибок сборки
В то время как проводной монтаж неизбежно связан с человеческим фактором — источником ошибок, гибкие печатные платы не имеют источников ошибок человеческой природы. Ручной монтаж — постоянный риск возникновения ошибок.
Гибкие печатные платы проектируются в составе системы межсоединений и затем воспроизводятся машинными методами, предотвращающими влияние человеческого фактора. В результате, за исключением неизбежных ошибок производства, гибкие печатные платы не позволяют создать соединения, не соответствующие спроектированной схеме.
Увеличенная системная надежность
Специалисты по надежности всегда при поиске источников отказов электронной аппаратуры ищут дефекты межсоединений. Академик Берг в свое время заявил: «Наука о надежности — это наука о контактах. Чем их больше, тем менее надежна система». Гибкие печатные платы — идеальное средство для уменьшения контактов. Когда они сконструированы должным образом и рационально применяются в электронной компоновке, они способствуют увеличению надежности, сокращая количество межсоединений в пределах электронного модуля или блока.
Замена проводного монтажа
В среде специалистов по гибким схемам бытует правило, по которому гибкие платы рентабельно использовать, когда нужно иметь больше 25 межсоединений от точки к точке. Это число несколько произвольно, но основная концепция верна.
Для выбора решения нужно сопоставлять стоимость проводного и печатного гибкого монтажа с учетом объема и других факторов производства. Некоторые проектировщики изделий находят гибкие печатные платы более рентабельными уже начиная с двух или трех связей. Тем не менее, в ряде случаев существует обоснованность использования жгутового монтажа в противовес гибким печатным платам. К примеру, на рис. 1 показан жгутовой проводной монтаж силовых цепей, не подлежащий замене на гибкие печатные платы.
В качестве материала для печатных плат, работающих в диапазоне СВЧ и при температурах до 260 °C, применяется фторопласт, армированный стеклотканью (например, ФАФ-4Д)[2] и керамика.
Гибкие платы делают из полиимидных материалов, таких как каптон.
Конструирование плат происходит в специализированных программах автоматизированного проектирования. Наиболее известны P-CAD, OrCAD, TopoR, Altium Designer,Specctra, Proteus, gEDA, KiCad и др.[3] Сам процесс конструирования часто именуют сленговым словом разводка, подразумевая процесс прокладки проводников.
Нормативы
В России существуют нормативы на конструкторскую документацию печатных плат в рамках Единой системы конструкторской документации:
ГОСТ 2.123-93 Единая система конструкторской документации. Комплектность конструкторской документации на печатные платы при автоматизированном проектировании.
ГОСТ 2.417-91 Единая система конструкторской документации. Платы печатные. Правила выполнения чертежей.
Другие стандарты на печатные платы:
ГОСТ Р 53386-2009 Платы печатные. Термины и определения.
ГОСТ Р 53429-2009 Платы печатные. Основные параметры конструкции. Этот ГОСТ задает классы точности печатных плат и соответствующие геометрические параметры. Также нормируются основные электрические параметры проводников и диэлектриков. Все еще часто упоминается предшественник этого стандарта — ГОСТ 23751-86.
ГОСТ 23752-79 Платы печатные. Общие технические условия. Стандарт регламентирует такие параметры как коробление печатных плат, условия и параметры нормоконтроля, электрические параметры материалов.
Типовой процесс
Рассмотрим типичный процесс разработки платы из готовой принципиальной электрической схемы: [4]
Подготовка к конструированию:
Импорт принципиальной электрической схемы в базу данных САПР конструирования печатной платы. Как правило подготовка схемы выполняется в отдельной схемотехнической САПР. Некоторые пакеты САПР содержат компоненты как схемотехники так и конструирования. Другие САПР ПП не имеют схемотехнической САПР в своем составе, только импортируя схемотехнику популярных форматов.
Ввод в САПР компонентов (чертежей каждого компонента, расположения и назначения выводов и др). Обычно при этом используются готовые библиотеки компонентов, поставляемые разработчиками САПР.
Уточнение у будущего изготовителя печатной платы его технологических возможностей (имеющиеся материалы, количество слоев, класс точности, допустимые диаметры отверстий, возможность покрытий и т. п.). Выбор материала платы, количества слоев металлизации, толщины материала и толщины фольги (наиболее часто используется стеклотекстолит толщиной 1,5 мм с фольгой толщиной 18 или 35 мкм).
Конструирование платы:
Определение конструктива печатной платы (габаритов, точек крепления, допустимых высот компонентов). Вычерчивание габаритов (краёв) платы, вырезов и отверстий, областей запрета размещения компонентов. Расположение конструктивно-привязанных деталей: разъёмов, индикаторов, кнопок и др. Определение правил расположения критичных проводников: выделение областей прокладки сильноточных проводников и шин питания; компоновка высокочастотных и дифференциальных линий, определение методов прокладки и экранировки чувствительных к помехам цепей и цепей-источников помех.[5]
Выполнение автоматического или ручного размещения компонентов. Обычно стремятся разместить компоненты на одной стороне платы поскольку двусторонний монтаж деталей заметно дороже в производстве.
Запуск трассировщика. При неудовлетворительном результате — перерасположение компонентов. Эти два шага зачастую выполняются десятки или сотни раз подряд. В некоторых случаях трассировка печатных плат (отрисовка дорожек) производится вручную полностью или частично.
Проверка платы на ошибки (DRC, Design Rules Check): проверка на зазоры, замыкания, наложения компонентов и др.
Создание выходной документации:
Экспорт файла в формат, принимаемый изготовителем печатных плат, например Gerber.
Подготовка сопроводительной записки в которой, как правило, указывают тип фольгированного материала, диаметры сверления всех типов отверстий, вид переходных отверстий (закрытые лаком или открытые, луженые), области гальванических покрытий и их тип, цвет паяльной маски, необходимость маркировки, способ разделения плат (фрезеровка или скрайбирование) и т. п..
Типовые ошибки конструирования
Производители печатных плат часто сталкиваются с неочевидными ошибками конструирования начинающими инженерами.[6] Наиболее типичные ошибки:
Неверный выбор диаметра сверления отверстий для монтажа компонентов. В процессе изготовления платы часть просвета отверстия уйдет на металлизацию, что может приводить к невозможности нормального монтажа компонента.
Ошибки в согласовании требуемого размера контура печатной платы с методом его обработки. Разные методы обработки контура требуют соответствующего припуска.
Ошибки при выборе отдельных размеров проводников, зазоров, отверстий, окантовки отверстий и т.п. Эти размеры определяют класс точности, а значит цену и сроки изготовления плат. Даже один элемент с ошибочно малым размером может переквалифицировать класс точности всей платы.
Неравномерное распределение дорожек, полигонов и точек пайки на крупногабаритных печатных платах может приводить к короблению плат после пайки в печах.
Отсутствие термозазора вокруг точек монтажа компонентов при подключении к крупным заливкам фольгой (полигонам или широким дорожкам) приводит к затруднениям и браку при пайке: медь является эффективным теплоотводом и затрудняет прогрев места пайки.
Для плат подлежащих лакированию следует учитывать требования к расположению разъемов и других не подлежащих лакированию компонентов. В противном случае растет процент брака при попадании лака на контакты разъемов.
