- •Тема 1. Іонно-плазмові методи отримання покриттів
- •Тема 2 Іонно-променеві методи отримання тонких плівок
- •17) 2.1Вакуумно-дугове осадження
- •18 ) 2.2 Іонно-променеве розпилення
- •2.3 Молекулярно-променева епітаксія
- •2.4 Лазерні методи модифікації поверхні
- •Тема 3. Хімічні вакуумні та позавакуумні методи модифікації поверхні
- •3.1 Реактивное катодное распыление
- •3.2 Газовазная мос-гидридная эпитаксия с использованием металлоорганических соединений (мосгэ)
- •Компоненты установки мос-гидридной эпитаксии
- •3.3 Жидкофазная эпитаксия
- •4. Химические вневакуумные методы
- •4.1 Электрохимическое осаждение покрытий
- •4.2 Анодирование
- •4.3 Химическая металлизация
- •Тема 4. Електронно-променеві, плазмові та лазерні методи зварювання.
- •Лазерная сварка
- •Аргонная сварка, применение аргонно-дуговой сварки
- •Плазменная сварка
- •Газовая сварка
- •Электродуговая сварка, дуговая сварка
- •21. Электронно-лучевая сварка
- •Техника сварки
- •Основные параметры режима электронно-лучевой сварки (таблица 1):
- •Сварка электронным лучом имеет значительные преимущества:
- •Недостатки электронно-лучевой сварки:
- •6.1 Плазменная сварка
- •Общепринятые обозначения
- •Технология плазменной сварки
- •Разновидности
- •Микроплазменная сварка
- •Плазменная сварка на средних токах
- •Плазменная сварка на больших токах
- •6.3 Плазменная резка
- •25 ( 1 ) 7. Лазерная сварка
- •8. Конструкции и параметры источников ионов.
- •10. Рис.2. Схема источника Кауфмана:
- •Основные параметры ионных источников.
- •9. Ионная имплантация.
- •10. Применения ионного распыления. Ионная очистка поверхностей от загрязнений.
- •11. Плазменная обработка поверхности материалов.
- •12. Способы контроля коррозионно-стойких и износо-стойких покрытий.
- •12.1 Неразрушающие способы контроля.
- •12.2 Исследование абразивной износостойкости образцов с ионно–плазменными покрытиями
12. Способы контроля коррозионно-стойких и износо-стойких покрытий.
12.1 Неразрушающие способы контроля.
Неразрушающие испытания приобретают важное значение, когда разработка покрытия уже закончилась и можно переходить к его промышленному применению. Прежде чем изделие с покрытием поступит в эксплуатацию, его проверяют на прочность, отсутствие трещин, несплошностей, пор или других дефектов, которые могут вызвать разрушение. Вероятность наличия дефектов тем больше, чем сложнее покрываемый объект.
В таблице 1 представлены и ниже описаны существующие неразрушающие методы определения качества покрытий.
Т
аблица
1. Неразрушающие методы контроля качества
покрытий перед их эксплуатацией.
Внешний осмотр
Простейшая оценка качества - внешний осмотр изделия с покрытием. Такой контроль сравнительно прост, он становится особенно эффективным при хорошем освещении, при использовании увеличительного стекла. Как правило, внешний осмотр должен производиться квалифицированным персоналом и в сочетании с другими методами.
Опрыскивание краской
Трещины и углубления на поверхности покрытия выявляются по впитыванию краски. Испытуемая поверхность опрыскивается краской. Затем ее тщательно вытирают и на нее напыляют индикатор. Через минуту краска выступает из трещин и прочих мелких дефектов и окрашивает индикатор, выявляя таким образом контур трещины.
Флуоресцентный контроль
Этот метод аналогичен методу впитывания краски. Испытуемый образец погружается в раствор, содержащий флуоресцентную краску, которая попадает во все трещины. После очистки поверхности образец покрывается новым раствором. Если покрытие имеет какие-либо дефекты, флуоресцентная краска в этом месте будет видна под ультрафиолетовым облучением.
Обе методики, основанные на впитывании, применяют только для выявления поверхностных дефектов. Внутренние дефекты при этом не обнаруживаются. Дефекты, лежащие на самой поверхности, выявляются с трудом, поскольку при обтирании поверхности перед нанесением индикатора краска с них удаляется.
Радиографический контроль
Контроль проникающим излучением используют для выявления пор, трещин и раковин внутри покрытия. Рентгеновские и гамма-лучи проходят через испытуемый материал и попадают на фотопленку. Интенсивность рентгеновского и гамма-излучения изменяется при прохождении их через материал. Любые поры, трещины или изменения толщины будут регистрироваться на фотопленке, и при соответствующей расшифровке пленки можно установить положение всех внутренних дефектов.
Радиографический контроль сравнительно дорог и протекает медленно. Необходима защита оператора от облучения. Трудно анализировать изделия сложной формы. Дефекты определяются, когда их размеры составляют более 2% от общей толщины покрытия. Следовательно, радиографическая техника непригодна для выявления мелких дефектов в крупных конструкциях сложной формы, она дает хорошие результаты на менее сложных изделиях.
Токовихревой контроль
Поверхностные и внутренние дефекты можно определять с помощью вихревых токов, индуцируемых в изделии внесением его в электромагнитное поле индуктора. При перемещении детали в индукторе, или индуктора относительно детали индуцированные вихревые токи взаимодействуют с индуктором и меняют его полное сопротивление. Индуцированный ток в образце зависит от наличия дефектов проводимости образца, а также его твердости и размера.
Применяя соответствующие индуктивности и частоты или их сочетание, можно выявить дефекты. Контроль вихревыми токами нецелесообразен, если конфигурация изделия сложна. Контроль этого вида непригоден для выявления дефектов на кромках и углах; в некоторых случаях от неровной поверхности могут поступать те же сигналы, что и от дефекта.
Ультразвуковой контроль
При ультразвуковом контроле ультразвук пропускают через материал и измеряют изменения звукового поля, вызванные дефектами в материале. Энергия, отраженная от дефектов в образце, воспринимается преобразователем, который превращает ее в электрический сигнал и подается на осциллограф.
В зависимости от размеров и формы образца для ультразвукового контроля используют продольные, поперечные или поверхностные волны. Продольные волны распространяются в испытуемом материал прямолинейно до тех пор, пока они не встретятся с границей или несплошностью. Первая граница, с которой встречается входящая волна, -граница между преобразователем и изделием. Часть энергии отражается от границы, и на экране осциллографа появляется первичный импульс. Остальная энергии проходит через материал до встречи с дефектом или противоположной поверхностью, положение дефекта определяется измерением расстояния между сигналом от дефекта и от передней и задней поверхностей.
Несплошности могут быть расположены так, что их можно определить, направляя излучение перпендикулярно к поверхности. В этом случае звуковой луч вводится под углом к поверхности материала для создания поперечных волн. Если угол входа достаточно увеличить, то образуются поверхностные волны. Эти волны проходят по контуру образца и могут обнаруживать дефекты близ его поверхности.
Существуют два основных типа установок для ультразвукового контроля. При резонансном испытании используют излучение с переменной частотой. При достижении собственной частоты, соответствующей толщине материала, амплитуда колебаний резко возрастает, что отражается на экране осциллографа. Резонансный метод применяют главным образом для измерения толщины.
При импульсном эхо-методе в материал вводят импульсы постоянной частоты длительностью в доли секунды. Волна проходит через материал, и энергия, отраженная от дефекта или задней поверхности, падает на преобразователь. Затем преобразователь посылает другой импульс и воспринимает отраженный.
Для выявления дефектов в покрытии и для определения прочности сцепления между покрытием и подложкой применяют также трансмиссионный метод. В некоторых системах покрытий измерение отраженной энергии не позволяет адекватно установить дефект. Это обусловлено тем, что граница между покрытием и подложкой характеризуется настолько высоким коэффициентом отражения, что наличие дефектов мало меняет суммарный коэффициент отражения.
Применение ультразвуковых испытаний ограничено. Это видно из следующих примеров. Если материал имеет грубую поверхность, звуковые волны рассеиваются так сильно, что испытание теряет смысл. Для испытания объектов сложной формы необходимы преобразователи, повторяющие контур объекта; неправильности поверхности вызывают появление всплесков на экране осциллографа, затрудняющих определение дефектов. Границы зерен в металле действуют аналогично дефектам и рассеивают звуковые волны. Дефекты, расположенные под углом к лучу, выявляются с трудом, так как отражение происходит в основном не по направлению к преобразователю, а под углом к нему. Часто бывает трудно различить несплошности, расположенные близко одна к другой. Кроме того, выявляются только те дефекты, размеры которых сравнимы с длиной звуковой волны.
Заключение
Отборочные испытания предпринимают во время начальной стадии разработки покрытия. Поскольку в период поисков оптимального режима число разных образцов очень велико, применяют комбинацию методов испытаний, чтобы отсеять неудовлетворительные образцы. Эта отборочная программа состоит обычно из нескольких типов окислительных испытаний, металлографического исследования, испытаний в пламени и испытания на растяжение. Покрытия, успешно прошедшие отборочные испытания, испытывают в условиях, аналогичных эксплуатационным.
Когда установлено, что определенная система покрытия выдержала испытания в эксплуатационных условиях, ее можно применить для защиты реального изделия. Необходимо разработать технику неразрушающего контроля конечного изделия перед пуском его в эксплуатацию. Неразрушающую методику можно использовать для выявления поверхностных и внутренних нор, трещин и несплошностей, а также плохого сцепления покрытия и подложки.
