Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лабораторная работа 6.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
150.02 Кб
Скачать

Лабораторная работа №6. Задача об использовании ресурсов как задача линейного программирования

Цель работы:

Целью лабораторной работы является получение навыков самостоятельной алгоритмической и программной реализации на компьютерной технике решения в MatLab задачи об использовании ресурсов как задачи линейного программирования.

Требования к содержанию, оформлению и порядку выполнения

Номер варианта индивидуального задания определяется последней цифрой в зачетной книжке студента (цифра 0 соответствует варианту № 10) или порядковым номером компьютера в компьютерном классе, за которым работает студент.

Лабораторные работы заключаются в изучении и программной реализации методов, рассмотренных в теоретическом курсе дисциплины.

Перед работой непосредственно на компьютере студенты обязаны внимательно изучить соответствующий теоретический материал, разобрать примеры, представленные на лекциях.

Программирование методов, указанных в заданиях лабораторных работ, следует выполнять самостоятельно, используя команды языка программирования пакета Matlab.

После завершения создания m-файлов в пакете Matlab, реализующих указанные методы, следует выполнить вычисления на основании данных своего варианта. Обязательно следует выполнить проверку полученных на компьютере результатов вычислений.

Отчет оформляется в соответствии с приведенным образцом.

Отчет о выполнении задания лабораторной работы должен содержать следующие разделы:

1. Формулировка задания на программирование.

2. Краткое описание исследуемого метода - фрагмент лекционного материала.

3. Текст программы в виде m-файла - является основным результатом выполнения работы.

4. Исходные данные, номер варианта.

5. Результаты вычислений, включая промежуточные результаты - копии текстовых файлов или копии экранных форм, графики.

6. Результаты проверки полученных данных

Общая постановка задачи

В результате выполнения заданий лабораторной работы студенты должны уметь создавать программно-алгоритмическую поддержку для компьютерной реализации решения задачи об использовании ресурсов как задачи линейного программирования в MatLab.

Лабораторные занятия проводятся в компьютерных классах.

Теоретическая часть

Общая задача линейного программирования может быть сформулирована следующим образом.

Найти такие значения действительных переменных , для которых целевая функция

принимает минимальное значение на множестве точек, координаты которых удовлетворяют системе ограничений

Как известно, упорядоченная совокупность значений n переменных , , … представляется точкой n-мерного пространства . В дальнейшем эту точку будем обозначать Х=( , , … ).

В матричном виде задачу линейного программирования можно сформулировать так:

,

где

, A – матрица размера ,

,

В MatLab задача линейного программирования решается с помощью функции Linprog:

Синтаксис:

Различные варианты записи правой части вызова функции Linprog:

x = linprog(f,A,b,Aeq,beq)

x = linprog(f,A,b,Aeq,beq,lb,ub)

[x,fval] = linprog(...)

[x,fval,exitflag] = linprog(...)

[x,fval,exitflag,output] = linprog(...)

Различные варианты записи левой части вызова функции Linprog:

  • x = linprog(f,A,b) находит min f'*x при условии, что A*x <= b.

  • x = linprog(f,A,b,Aeq,beq) решает указанные выше задачу при условии дополнительного выполнения ограничений в виде равенств Aeq*x = beq. Если нет неравенств, то устанавливается A=[] и b=[].

  • x = linprog(f,A,b,Aeq,beq,lb,ub) определяет набор нижних и верхних границ для проектируемых переменных х, так что решение всегда находится в диапазоне lb <= x <= ub. Если нет неравенств, то устанавливается Aeq=[] и beq=[].

  • [x,fval] = linprog(...) возвращает значение целевой функции fun как решение от х: fval = f'*x.

  • [x,lambda,exitflag,output] = linprog(...) возвращает структурный выход с информацией об оптимизации

  • [x,fval,exitflag,output,lambda] = linprog(...) Возвращает структурную lambda, чьи поля включают в себя множители Лагранжа как решение от х.