- •Введение 5
- •Раздел 5 использование разновременных лп 107
- •6. Расчеты безопасности мореплавания 118
- •Введение
- •Раздел 1 элементы общей теории вождения морского судна
- •Навигационный сигнал как носитель навигационной информации.
- •1.1.1 Общие положения
- •1.1.2 Классификация средств и методов навигации
- •1.1.3 Классификация методов получения навигационной информации
- •1.2 Навигационное пространство и элементы движения судна
- •3 Навигационные параметры, их измерения. Классификация методов и средств
- •1.3.1 Навигационная информация и ее классификация
- •6) Параметры движения других судов (целей) и другие навигационные величины.
- •1.3.2 Классификация и принципы получения навигационных параметров
- •1.3.2 Погрешности навигационных элементов
- •Раздел 2 Геометрия земного сфероида
- •2.1 Размеры и форма Земли
- •2.2 Системы координат и направлений
- •2.2.1 Географические координаты
- •2.2.2 Деление горизонта
- •2.3 Главные радиусы кривизны, длины дуг
- •2.4 Геодезическая линия и локсодромия
- •2.5 Прямая и обратная геодезические задачи
- •Раздел 3 основы математической картографии
- •3.1 Основные понятия и определения
- •3.2 Элементы общей теории искажений
- •3.3 Картографические проекции
- •3.4 Цилиндрическая равноугольная проекция
- •3.5 Построение промыслово-навигационного планшета в меркаторской проекции.
- •Сущность омс
- •Способы решения задачи омс
- •Применение результатов омс
- •4.1.2 Изолинии и линии положения
- •4.2 Графоаналитический метод
- •4.3 Влияние случайных ошибок измерений на точность определяемого по двум лп места.
- •4.3.1 Смещение и вес лп.
- •4.3.2 Эллипс погрешностей
- •4.4 Графические методы отыскание вероятнейшего места судна при избыточном числе линий положения
- •4.4.1 Действие систематических ошибок
- •4.4.2 Действие случайных ошибок
- •4.4.3 Совместное действие систематических и случайных ошибок
- •4.4.4 Отыскание вероятнейшего места судна при неравноточных измерениях
- •Штурманский метод.
- •Центрографический метод
- •4.5 Общий случай построения эллипса погрешностей
- •4.6 Определение места судна и оценка точности аналитически
- •4.6.1 Аналитическое определения места судна
- •4.6.2 Аналитическая оценка точности места судна
- •Порядок и способы решения задач определения места судна (омс) с оценкой точности
- •Раздел 5 использование разновременных лп
- •5.1 Общий случай решения основной задачи судовождения
- •5.2 Метод исправленного крюйс-пеленга
- •5.3 Общий случай слп
- •5.4 Частные случаи применения слп
- •Раздел 6 расчеты безопасности плавания
- •6.1 Особенности проблемы
- •6.2 Основные способы определения вероятности безаварийной
- •6.3 Количественная оценка безопасности плавания судна вблизи навигационной опасности
- •6.4 Влияние технического состояния навигационных приборов судна
- •Математические основы судовождения
- •298309 Г. Керчь, Орджоникидзе, 82.
1.3.2 Классификация и принципы получения навигационных параметров
Основным требованием судоводителей к навигационным средствам является возможность надежного определения места судна на всем протяжении его пути.
Однако создать систему таких средств довольно трудно, т.к. требования, предъявляемые к средствам ориентирования в близких и отдаленных от берега районах, совершенно различны.
В условиях океанских переходов судоводитель обычно не нуждается в очень высокой точности определения места судна. При плавании на средних расстояниях от берега требования к точности судовождения повышаются. Еще более высокая точность требуется от навигационных средств, предназначенных для обслуживания прибрежных районов, особенно вблизи портов и на путях наиболее интенсивного движения судов. Этим и объясняется существование в настоящее время большого количества навигационных устройств и систем, основанных на различных по природе физических принципах измерения навигационных параметров.
Современная навигация основана на использовании следующих физических явлений: магнитное поле Земли , гравитационное поле Земли , инерция физических тел , механические колебания среды (акустика) , электромагнитные колебания , собственные колебания физических систем. Кратко рассмотрим эти явления.
1. Магнитное поле Земли, как известно, характеризуется напряженностью - векторной величиной, изменяющейся как по величине, так и по направлению в околоземном пространстве. Эта напряженность используется в магнитных и гиромагнитных компасах.
Магнитные компасы основаны на свойстве свободно подвешенной за центр тяжести магнитной стрелки устанавливаться своей магнитной осью по направлению магнитного поля. Они в течение сотен лет являлись и сейчас являются простыми и надежными курсо-ухазателями пути судна, если место их установки обеспечивается определенным минимумом магнитных условий, необходимых для правильной работы компасов.
Гиромагнитные компасы основаны на взаимодействии магнитной системы и гравитационных сил Земли. Магнитная система располагается магнитной осью по равнодействующей компасного и гироскопического меридианов. Система сохраняет неизменное направление главной оси гироскопа и не реагирует на мгновенные удары и толчки. При этом магнитная система управляет главной осью гироскопа, с
которой связана картушка компаса, надежно устанавливая ее в компасный меридиан.
На основе измерения электродвижущей силы, индуктируемой в измерительных проводниках при их движении вместе с судном в магнитном поле Земли, построены геоэлектромагнитные измерители переносной скорости судна (течения). Последние носят самостоятельное название - электромагнитные измерители течения (эмиты) к позволяют определять как скорость, так и направление течения.
2. Гравитационное поле Земли используется в судовождении преимущественно для определения направлений. Наибольшее распространение имеют гироскопические указатели направлений, основанные на свойстве быстро вращающегося тела (гироскопа) сохранять неизменным в пространстве заданное направление оси вращения.
При идеальных условиях ось гироскопического устройства указывает направление истинного меридиана и непрерывно поворачивается со скоростью, равной и направленной против угловой скорости вращения Земли в данной широте, и таким образом удерживается в плоскости истинного меридиана. Такие устройства называют гироскопическими компасами или гирокомпасами. Они дают устойчивые показания направлений в малых и средних широтах. Если плавание совершается в высоких широтах, то в качестве курсоуказателя используют гироазимут, действие которого основано на том же физическом принципе, что и действие гирокомпаса. Кроме гирокомпасов и гироазимутов в современном судовождении находят широкое применение и другие гироскопические приборы, такие, как гировертикали - для создания искусственного горизонта в секстанах и гиростабилизаторы – для стабилизации платформы, на которой устанавливаются специальные устройства для измерений и стрельбы.
3. На принципе использования свойств инерции физических тел в настоящее время быстро развиваются инерциальные методы навигации. Принцип действия инерциальных систем заключается в непрерывном измерении и интегрировании ускорений при движении судна в некоторой стабилизированной плоскости. Стабилизация осуществляется с помощью управляющих гироскопов, измерение ускоре
ний - с помощью акселерометров. Для транспортного и промыслового судовождения наиболее приемлемы инерциальные системы, в которых с помощью акселерометров измеряются две горизонтальные составляющие ускорения судна (по меридиану и параллели). Навигационные инерциальные системы наилучшим образом отвечают требованиям автономности, помехоустойчивости, непрерывности, автоматического получения координат и управления.
4. На свойстве акустических колебаний отражаться от различных объектов в воде основано использование всех видов современных акустических приборов и систем. При этом в качестве физического параметра измеряется время распространения звукового луча - одна из характеристик колебательного процесса.
К наиболее распространенным гидроакустическим приборам относятся:
- эхолоты, служащие для измерения глубины, а также для обнаружения рыбных концентраций или других объектов под килем судна;
-эхоледомеры, служащие для определения высоты слоя воды, а также толщины льда над подводным судном ;
- гидролокационные станции или просто гидролокаторы, предназначенные для обнаружения объектов, полностью или частично находящихся в воде (айсберг, ска-ла, берег, отмель, подводная лодка, косяк рыбы и пр.), и для определения их местонахождения относительно судна (направление и расстояние).
Другая область возможного применения гидроакустики связана со сравнительно невысокой скоростью распространения звука в воде, что позволяет создать измерители скорости судна относительно дна (берега), основанные на использовании эффекта Допплера, который мы рассмотрим немного позже.
5. Распространение электромагнитных волн с практически постоянной скоростью позволяет определить физические величины (параметры), характеризующие геометрическое положение или элементы движения судна относительно источника информации.
В навигации в настоящее время нашли широкое применение радиоволны и волны оптического диапазона (видимое и инфракрасное излучение).
В основу всех радиотехнических средств навигации положен принцип измерения одного из параметров электромагнитного поля - физической величины, определяемой при помощи измерительной аппаратуры.
В соответствии с этим все радиотехнические навигационные системы и устройства по принципу измерения физического параметра подразделяются на следующие группы: амплитудные, фазовые, частотные и импульсные. Рассмотрим кратко каждую группу.
а) Амплитудные устройства, в которых используется изменение амплитуды колебаний, т.е. ослабление или увеличение слышимости сигналов или изменение отношения интенсивности слышимости двух принимаемых колебаний. К этой группе относятся курсовые радиомаяки, радиопеленгаторы различных типов и т.д.
б) Если для определения места судна с помощью устройств производят измерение разности фаз между колебаниями, то такие устройства относят к фазовым. В этих устройствах измерение фазовых углов производится с помощью фазометров или фазовых счетчиков и самописцев, отмечающих изменение числа фазовых циклов (радиолаг, радиодальномер, фазовый радиомаяк, фазовая радионавигационная система и др.).
в) Частота редко является объектом измерения. В судовождении обычно измеряется разность частот электромагнитных колебаний, называемая допплеровским приращением частоты (эффект Допплера). С помощью допплеровского метода определяется радиальная составляющая скорости или ускорения излучателя относительно объекта отражения, т.е. сближение излучателя с судном или удаление от него. Это дает возможность успешно реализовать данный метод в навигационных целях:
для определения места судна с помощью радиодопплеровских систем, т.е. таких радионавигационных систем, в которых излучающее устройство помещается на
движущемся искусственном спутнике Земли, а устройство, принимающее и регистрирующее допплеровский сдвиг частот, - на судне ;
для определения скорости судна, а также наблюдения за подводной обстановкой при использовании эффекта Допплера применительно к звуковым волнам в
допплеровских гидроакустических системах, в которых регистрирующее допплеровский сдвиг частот устройство устанавливается на судне, а объектом отражения является морское дно или подводный объект.
г) Во многих радионавигационных устройствах измеряется время, причем различают:
- Устройства, в которых измеряется время, необходимое для распространения радиоволн на измеряемое расстояние;
- Устройства, в которых измеряются интервалы времени между моментами приема сигналов.
Несмотря на очень широкое приминение радиоволн в навигации характер их распространения накладывает серьезные ограничения на выбор их диапазонов. В радионавигационных системах дальнего действия используется только длинновол-
новый диапазон, а коротковолновые диапазоны применяются в радионавигационных системах, действующих в условиях прямой видимости.
Ограничения на использование световых волн накладывают погодные условия, от которых целиком зависит надежность их применения. Однако с изобретением прибора, искусственно генерирующего световое излучение –лазера, появилась возможность использования световых излучений для измерения не только направлений, но и расстояний и скоростей, причем технические прогнозы показывают на очень высокую точность потенциальных лазерных измерителей скорости и расстояний.
Невидимый для человеческого глаза диапазон электромагнитных колебаний – инфракрасное излучение, применяется в специальных приборах и устройствах для автоматического обнаружения целей и систем самонавидения на цели. Достижения
современной инфракрасное техники позволили вплотную подойти к созданию совершенных навигационных систем, использующих естественное и искусственное излучение тел (маяки, другие суда, планеты)
6. Собственные колебания изолированных физических систем характеризуются высоким постоянством периода. В настоящее время кроме традиционныъ судовых хронометров, использующих постоянство периода крутильных колебаний пьезокварцевых пластин со стабильностью частоты 10-7 – 10-9. Сверхстабильность можно получить при использовании молекулярных, атомных и ядерных резонансов. Ощутить степень точности хранителей времени можно в сравнении: если морские хронометры имеют погрешность хода 1-4с за сутки, то ядерные генераторы стабильной частоты отличаются от истинного хода времени на 1с за сотни миллионов лет. Сверхстабильные стандарты времени необходимы для более полного раскрытия диапазона использования дальних и сверхдальних систем связи и радионавигации.
Таким образом, мы кратко рассмотрели принципиальные возможности измерений и использования различных физических явлений в навигационной аппаратуре, системах и устройствах.
