Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Реферат по КСЕ на тему Валентность.doc
Скачиваний:
130
Добавлен:
22.06.2014
Размер:
117.25 Кб
Скачать

Современные квантово-химические представления о валентности

  Начиная с 30-х гг. 20в. представления о природе и характере валентности постоянно расширялись и углублялись параллельно с расширением и углублением представлений о химической связи. Существенный прогресс был достигнут в 1927, когда Гейтлер и Ф. Лондон выполнили первый количественный квантово-химический расчёт молекулы H2. В подтверждение гипотезы Льюиса было показано, что химическая связь в H2 действительно осуществляется парой электронов и является результатом электростатического (кулоновского) взаимодействия электронов и ядер. Образование молекулы из атомов энергетически выгодно, если спины электронов направлены в противоположные стороны, когда притяжение электронов к ядру (остову) чужих атомов больше энергии отталкивания между электронами и между ядрами. Параллельная ориентация спинов приводит к отталкиванию атомов друг от друга.

  В дальнейшем идеи Гейтлера-Лондона были распространены на многоатомные молекулы, что привело к созданию теории локализованных пар. Согласно этой теории, общая картина распределения электронной плотности в молекулах типа MXk складывается из независимых фрагментов М — X, связь в каждом из которых осуществлена парой электронов (по одному от центрального атома М и от заместителя X), локализованной между двумя атомами М и X. Согласно этой теории валентность не просто связывается с наличием неспаренного электрона, но и характеризуется тем, в каком состоянии этот электрон находится или, в терминах теории химической связи, какую атомную орбиталь (АО) он занимает. АО разного типа имеют различную ориентацию в пространстве: s-орбиталь сферически симметрична, орбитали px, ру и pz вытянуты вдоль трёх взаимно перпендикулярных осей и т.д. Электроны атомов в молекулах в общем случае описываются «гибридными» (смешанными) орбиталями, в которые, в принципе, могут входить любые валентные АО в разных количественных соотношениях и у которых электронные облака сконцентрированы вдоль направлений связей М — Х значительно сильнее, чем у простых АО. Состояние валентных электронов, а следовательно и свойства валентности атома М, в значительной мере определяют закономерности в свойствах молекул MXk для широкого круга заместителей X. Наиболее плодотворными оказались концепции направленных валентностей и валентных состояний атомов, позволившие объяснить и обобщить ряд закономерностей в геометрическом строении и энергиях химических связей органических и неорганических молекул.

  В теории направленных валентностей предполагается, что связи М — Х в молекулах MXk тем прочнее, чем больше перекрывание электронных облаков гибридных орбиталей атомов М и X, то есть чем сильнее эти облака сконцентрированы вдоль направлений М — X. Поэтому молекулы MXk должны иметь такое геометрическое строение, при котором плотность гибридных АО вдоль направлений связей максимальна, а валентные углы Х — М — Х совпадают с углами между направлениями гибридных АО центрального атома. Например, в молекулах типа PH3 и SH2 связи осуществляются почти чистыми 3р-орбиталями центральных атомов, и поэтому PH3 и SH2 имеют пирамидальное и угловое строение с углами Н — М — Н ~ 90°. В дигалогенидах Zn, Cd, Hg, двуокисях, дисульфидах и др. соединениях углерода и его аналогов связи образуются за счёт sp-гибридных АО с валентным углом 180°, так что все молекулы типа CdCl2, Hg(CH3)2, HgI2, CS2, SiO2 и др. в парах имеют линейное строение. В случае Са, Sr, Вa, Ra и переходных металлов III—VI групп смешанная гибридизация sp + sd приводит к тому, что молекулы типа CaF2, SrF2, BaHal2, TiO2, HfO2, TaO2, ThO2, UO2 и др. имеют угловое строение.

  С проблемой валентности тесно связано приближённое понятие валентного состояния атома— гипотетического состояния, в котором находится атом в молекуле. Оно характеризуется валентной конфигурацией, то есть типом и числом заполненных и пустых валентных АО; их гибридизацией, воспроизводящей геометрическое строение ближайшего окружения рассматриваемого атома; числом электронов (в теории локализованных пар — это целое число: 2, 1 или 0), заселяющих каждую из гибридных АО, и относительной ориентацией спинов электронов. Например, в молекуле метана CH4 атом С имеет валентную конфигурацию 2s2p3 с четырьмя тетрагональными sp3-гибридными орбиталями (te), направленными к вершинам тетраэдра, каждая из которых заселена одним электроном с неопределенно ориентированным спином, осуществляющим одну гайтлер-лондоновскую связь с соответствующим атомом Н. Как правило, валентное состояние атома в молекуле не совпадает с основным состоянием изолированного атома. Так, у углерода и его аналогов основное состояние может быть лишь двухвалентным. У всех атомов II группы периодической системы основное состояние s2 вообще не может быть валентным, и для образования молекул типа ZnCl и ZnCl2 необходимо возбуждение s-электрона на ближайший пустой р-уровень. Энергия возбуждения валентного состояния из основного состояния для разных атомов различна и может достигать нескольких сотен ккал/моль, давая существенный вклад в общий энергетический баланс образования молекул из атомов. В случае Zn, Cd и Hg возбуждение s  р происходит при присоединении первого атома галогена и требует значительных затрат энергии (90—120 ккал/моль), поэтому энергия разрыва связи М — Hal в двухатомных молекулах MHal значительно меньше, чем связи HalM — Hal в трёхатомных молекулах MHal2. У Ca, Sr, Вa, Ra затраты на возбуждение s р или s d значительно меньше (30—50 ккал/моль), и здесь энергии разрыва связей в молекулах галогенидов гораздо ближе друг другу.

Следует помнить, что подразделение связей в соединениях на гайтлер-лондоновские, донорно-акцепторные и дативные имеет, вообще говоря, лишь генетический смысл, поскольку после того как соединение образуется, в нём происходит перераспределение электронной плотности и выравнивание связей: например, в каждом из комплексных анионов типа [BF4]-, [BeF4]2-, [SiFe6] 2-, [АlF6]3-, [ZnF6]4- и др. все связи М - F совершенно одинаковы.

Установлено также, что в солях ион NO3- имеет структуру правильного треугольника, а ионы и - структуру правильного тетраэдра.

   Теория локализованных пар ограничена в основном несопряжёнными органическими и простыми неорганическими соединениями. Так, в случае «электронно-избыточных» молекул типа PF5, SF6, IF7, XeF6 эта теория не может объяснить осуществления высших валентностей у атомов Р, S, I, Xe без привлечения валентных состояний с большими целочисленными заселённостями внешних d-opбиталей (sp3d для Р, sp3d3 для I, s2p3d3 для Xe и т.д.); однако энергии возбуждения последних столь велики (200—400 ккал/моль и более), что затраты на их возбуждение вряд ли могут окупиться за счёт выигрыша в энергии при образовании связей. В «электронно-дефицитных» молекулах типа В2Н6 число связей, образуемых атомом Н, больше числа имеющихся у него валентных АО, так что связи мостиковых Н с двумя атомами В могут быть описаны только трёхцентровыми молекулярными орбиталями. В случае ароматических и сопряжённых молекул типа C5H5, C6H6, C7H7 и др., их комплексов с металлами и других производных валентные 2р-электроны в равной степени принадлежат всем атомам С и могут быть описаны лишь с помощью делокализованных молекулярных орбиталей, охватывающих всё кольцо или углеродный остов в целом. Иными словами, представления о локализованных валентностях и связях оказались слишком узкими, чтобы вместить все известные типы соединений.

  Поэтому естественным следующим шагом в развитии общей теории валентности стал метод молекулярных орбиталей (MO), который рассматривает молекулу как совокупность ядер и электронов, где каждый электрон движется в поле остальных электронов и всех ядер. Молекулярные орбитали, описывающие состояние электронов, в общем случае охватывают все атомы молекулы, так что каждый атом способен в принципе образовывать связи со всеми остальными атомами молекулы. Метод МО значительно более общ и последователен, что делает его в принципе пригодным для описания любых классов соединений.