- •К.И. Таперо, в.Н. Улимов, а.М. Членов Радиационные эффекты в кремниевых интегральных схемах космического применения Аннотация
- •Содержание
- •Введение
- •1 Основы физики взаимодействия ионизирующих излучений с полупроводниками
- •1.1 Краткое описание радиационных характеристик в окружающем пространстве
- •1.1.1 Радиационные условия в космическом пространстве Внешние воздействующие факторы космического пространства
- •Источники ионизирующих излучений в космическом пространстве
- •1.1.2 Ионизирующие излучения ядерного взрыва
- •1.1.3 Ионизирующие излучения атомных электростанций
- •1.2 Величины, характеризующие ионизирующее излучение и его взаимодействие с веществом
- •1.2.1 Некоторые величины и единицы, характеризующие ионизирующее излучение и его поле
- •1.2.2 Некоторые величины и единицы, характеризующие взаимодействие ионизирующего излучения с веществом
- •1.2.3 Некоторые дозиметрические величины и единицы
- •Определение поглощенной дозы при постоянном значении лпэ ионизирующих частиц
- •Определение поглощенной дозы с учетом изменения лпэ ионизирующих частиц по мере прохождения их через образец
- •1.2.4 Некоторые величины и единицы, характеризующие изотопные источники ионизирующих излучений
- •1.3 Физические процессы при взаимодействии ионизирующих излучений с материалами электронной техники
- •1.3.1 Первичные радиационные эффекты при воздействии проникающей радиации на полупроводниковые материалы
- •1.3.2 Смещение атомов из узлов решетки при воздействии ионизирующих излучений
- •Смещение атомов при облучении нейтронами
- •Смещение атомов при облучении заряженными частицами
- •Смещение атомов при облучении гамма-квантами
- •1.3.3 Ионизация при воздействии проникающей радиации на полупроводниковые материалы Ионизация при облучении нейтронами
- •Ионизация при облучении заряженными частицами
- •Ионизация при облучении гамма-квантами
- •Эффект усиления дозы
- •1.3.4 Ядерные превращения при воздействии ионизирующих излучений
- •1.3.5 Термостабильные радиационные центры в полупроводниках
- •1.3.6 Изменение электрофизических параметров полупроводниковых материалов при радиационном облучении
- •2 Изменение электрофизических параметров биполярных приборных структур вследствие введения структурных дефектов при радиационном облучении
- •2.1 Диодные структуры
- •2.2 Транзисторные структуры
- •2.3 Устойчивость радиационных изменений электрических параметров полупроводниковых приборов
- •3 Дозовые ионизационные эффекты в структуре Si/SiO2 и их влияние на характеристики полупроводниковых приборов и микросхем
- •3.1 Особенности строения структуры Si/SiO2
- •3.1.1 Особенности строения диоксида кремния
- •Кристаллические формы SiO2
- •Аморфный диоксид кремния
- •Дефекты в диоксиде кремния, отвечающие за накопление заряда
- •3.1.2 Особенности строения границы раздела Si/SiO2 Структура границы раздела
- •Дефекты на границе раздела Si/SiO2, отвечающие за накопление заряда
- •3.1.3 Влияние водорода и водородсодержащих соединений на свойства структуры Si/SiO2
- •3.2 Электрические методы исследований заряда в оксиде и плотности поверхностных состояний
- •3.2.1 Метод вфх
- •3.2.2 Метод подпороговых вах
- •3.2.3 Методы, основанные на измерении надпороговой вах транзисторов
- •3.2.4 Метод накачки заряда
- •3.3 Накопление и релаксация зарядов в структуре Si/SiO2 при радиационном облучении и отжиге
- •3.3.1 Общее описание процессов накопления заряда в структурах Si/SiO2 при радиационном облучении
- •3.3.2 Выход заряда
- •3.3.3 Перенос дырок через SiO2
- •3.3.4 Накопление и нейтрализация заряда на ловушках в оксиде
- •3.3.5 Механизм нейтрализации заряда в оксиде
- •3.3.6 Особенности накопления поверхностных состояний при радиационном облучении
- •3.3.7 Латентное накопление поверхностных состояний
- •3.3.8 Накопление поверхностных состояний в зависимости от интенсивности излучения
- •3.3.9 Отжиг поверхностных состояний
- •3.3.10 Механизм накопления поверхностных состояний
- •3.3.11 Граничные ловушки
- •3.4 Влияние космической радиации на характеристики приборов и микросхем, изготовленных на основе моп-структур
- •3.4.1 Изменение характеристик моп-транзисторов и кмоп-логических элементов при радиационном облучении
- •3.4.2 Влияние конструктивно-технологических характеристик на радиационную стойкость моп-структур
- •3.4.3 Радиационные эффекты в моп-структурах с ультратонкими оксидами
- •3.4.4 Некоторые особенности дозовых радиационных эффектов в мдп-структурах с альтернативными диэлектриками
- •3.4.5 Влияние полевых оксидов на радиационную стойкость ис
- •3.4.6 Особенности проявления дозовых радиационных эффектов в микросхемах, изготовленных по кни-технологии
- •3.5 Особенности радиационных испытаний приборов и микросхем на основе моп- и кмоп-структур
- •3.5.1 Корреляция между отдельными транзисторами и микросхемами
- •3.5.2 Наихудший электрический режим
- •3.5.3 Влияние на радиационную стойкость высокотемпературной нагрузки (наработки) перед облучением
- •3.5.4 Выбор источников ионизирующих излучений при проведении радиационных испытаний моп и кмоп ис
- •3.5.5 Процедуры радиационных испытаний, учитывающие влияние факторов низкой интенсивности облучения
- •4 Особенности деградации биполярных приборов и микросхем при воздействии низкоинтенсивного ионизирующего излучения (эффект eldrs)
- •4.1 Влияние интенсивности излучения на радиационный отклик биполярных транзисторов
- •4.2 Влияние интенсивности излучения на радиационный отклик биполярных интегральных схем
- •4.3 Физические модели эффектов низкоинтенсивного облучения биполярных приборов и микросхем
- •4.4 Проблема экспериментального моделирования воздействия излучений низкой интенсивности на биполярные изделия
- •4.5 Выводы
- •5 Одиночные события в бис при воздействии отдельных заряженных частиц космического пространства
- •5.1 Основные виды и классификация одиночных событий
- •5.1.1 Краткое описание основных видов ос Обратимые одиночные сбои (seu)
- •Одиночные события радиационного защелкивания (sel)
- •Одиночный микродозовый эффект (sehe)
- •Одиночный эффект прерывания функционирования (sefi)
- •Эффект выгорания (seb)
- •Эффект пробоя диэлектрика (segr)
- •Одиночный эффект вторичного пробоя в моп-транзисторах (ses)
- •Одиночные события, связанные с импульсной переходной ионизационной реакцией (set)
- •5.1.2 Основные параметры чувствительности полупроводниковых приборов и микросхем к одиночным событиям
- •5.2 Физические процессы, приводящие к возникновению одиночных событий
- •5.2.1 Общее описание процессов возникновения одиночных событий
- •5.2.2 Образование носителей заряда (ионизация)
- •5.2.3 Рекомбинация неравновесных носителей заряда
- •5.2.4 Перенос неравновесных носителей
- •5.2.5 Сбор заряда
- •5.3 Экспериментальные методы исследования чувствительности изделий полупроводниковой электроники к одиночным событиям при воздействии тяжелых заряженных частиц и протонов
- •5.3.1 Эксперименты на ускорителях протонов
- •5.3.2 Эксперименты на ускорителях ионов
- •5.3.3 Эксперименты с изотопными источниками
- •5.3.4 Эксперименты с использованием ионных микропучков
- •5.3.5 Эксперименты с использованием имитаторов
- •Литература
1.3 Физические процессы при взаимодействии ионизирующих излучений с материалами электронной техники
Данные вопросы подробно освещены в [2, 3, 9–11]. В настоящем издании авторы ограничились рассмотрением лишь основных моментов, касающихся данной тематики.
1.3.1 Первичные радиационные эффекты при воздействии проникающей радиации на полупроводниковые материалы
Проникающая радиация имеет две формы: электромагнитное излучение (гамма- и рентгеновское излучение) и излучение частиц (электроны, ионы, нейтроны). При прохождении через полупроводниковый материал быстрые частицы или фотоны теряют свою энергию вследствие ряда процессов. Степень реализации того или иного процесса зависит как от природы и энергии частицы (или фотона), так и от ряда свойств облучаемого материала. Кроме того, на характер энерговыделения при прохождении облучаемого материала могут влиять внешние условия во время облучения (например, температура). В общем случае при воздействии ИИ на твердое тело могут иметь место следующие первичные эффекты [2, 3, 9, 11]:
ионизация атомов (разрыв валентных связей — обратимый процесс);
смещение атомов из узлов решетки (образование простейших дефектов типа пар Френкеля);
возбуждение атомов и электронов без смещения (нагрев кристалла);
ядерные превращения.
С точки зрения деградации параметров ПП и ИС при воздействии проникающей радиации основную роль играют радиационные эффекты двух видов: ионизационные эффекты и эффекты смещения. В дальнейшем в настоящем издании будут в основном рассматриваться радиационные эффекты этих видов.
Ионизационные эффекты связаны с ионизацией вещества излучением, т.е. с образованием под действием ИИ свободных носителей заряда. Данные носители, перемещаясь по объему облучаемого материала и захватываясь на имеющиеся там ловушки, могут привести к накоплению заряда в различных областях приборных структур (как правило, это различные диэлектрические слои) и вызвать деградацию параметров ПП и ИС. Ионизационные эффекты такого типа, в частности, определяют деградацию параметров ПП и ИС, выполненных по МОП- и КМОП-технологии, а также некоторых биполярных ПП и ИС (в том случае, если их отказ определяется каналами утечек, связанными с диэлектрическими слоями). Кроме того, вследствие ионизационных эффектов в активных и пассивных областях ПП и ИС могут возникать импульсы ионизационных токов. Эти токи, в зависимости от их величины и локализации, а также от типа облучаемого изделия, могут привести к различным эффектам как обратимого, так и необратимого характера. К обратимым эффектам можно отнести, например, возникновение в выходных цепях импульсных сигналов помех, что может привести к сбоям в работе РЭА, изменение логического состояния цифровых ИС (триггеров, регистров, ячеек памяти и т.п.). К необратимым эффектам, которые могут развиться в катастрофический отказ облучаемого изделия, можно отнести радиационное защелкивание в КМОП-схемах (включение паразитных тиристорных структур), вторичный пробой в МДП-транзисторах и ИС динамической памяти, связанный с механизмом усиления ионизационных токов паразитными биполярными транзисторами, пробой подзатворного диэлектрика в мощных МДП-транзисторах и др.
Эффекты смещения обусловлены перемещением атомов из своего нормального положения в кристаллической решетке. Эти перемещения приводят к появлению структурных дефектов в кристаллической решетке, называемых радиационными дефектами (РД). Образование РД в объеме облучаемых полупроводниковых материалов ведет к изменению их электрофизических параметров, что приводит, в свою очередь, к изменению характеристик облучаемых ПП и ИС. Механизмы отказа при радиационном облучении, связанные с эффектами смещения, наиболее характерны для ПП и ИС, изготовленных по биполярной технологии, поскольку их основные характеристики в основном определяются объемными свойствами полупроводниковых материалов (как уже упоминалось выше, отказы изделий данного типа, связанные с ионизационными эффектами, также возможны). Кроме того, проявление эффектов смещения более характерно в случае воздействия излучения частиц (электронов, протонов, нейтронов, ТЗЧ), однако при воздействии гамма-квантов также могут наблюдаться эффекты смещения как результат взаимодействия атомов мишени с образующимися при облучении комптоновскими электронами.
