- •К.И. Таперо, в.Н. Улимов, а.М. Членов Радиационные эффекты в кремниевых интегральных схемах космического применения Аннотация
- •Содержание
- •Введение
- •1 Основы физики взаимодействия ионизирующих излучений с полупроводниками
- •1.1 Краткое описание радиационных характеристик в окружающем пространстве
- •1.1.1 Радиационные условия в космическом пространстве Внешние воздействующие факторы космического пространства
- •Источники ионизирующих излучений в космическом пространстве
- •1.1.2 Ионизирующие излучения ядерного взрыва
- •1.1.3 Ионизирующие излучения атомных электростанций
- •1.2 Величины, характеризующие ионизирующее излучение и его взаимодействие с веществом
- •1.2.1 Некоторые величины и единицы, характеризующие ионизирующее излучение и его поле
- •1.2.2 Некоторые величины и единицы, характеризующие взаимодействие ионизирующего излучения с веществом
- •1.2.3 Некоторые дозиметрические величины и единицы
- •Определение поглощенной дозы при постоянном значении лпэ ионизирующих частиц
- •Определение поглощенной дозы с учетом изменения лпэ ионизирующих частиц по мере прохождения их через образец
- •1.2.4 Некоторые величины и единицы, характеризующие изотопные источники ионизирующих излучений
- •1.3 Физические процессы при взаимодействии ионизирующих излучений с материалами электронной техники
- •1.3.1 Первичные радиационные эффекты при воздействии проникающей радиации на полупроводниковые материалы
- •1.3.2 Смещение атомов из узлов решетки при воздействии ионизирующих излучений
- •Смещение атомов при облучении нейтронами
- •Смещение атомов при облучении заряженными частицами
- •Смещение атомов при облучении гамма-квантами
- •1.3.3 Ионизация при воздействии проникающей радиации на полупроводниковые материалы Ионизация при облучении нейтронами
- •Ионизация при облучении заряженными частицами
- •Ионизация при облучении гамма-квантами
- •Эффект усиления дозы
- •1.3.4 Ядерные превращения при воздействии ионизирующих излучений
- •1.3.5 Термостабильные радиационные центры в полупроводниках
- •1.3.6 Изменение электрофизических параметров полупроводниковых материалов при радиационном облучении
- •2 Изменение электрофизических параметров биполярных приборных структур вследствие введения структурных дефектов при радиационном облучении
- •2.1 Диодные структуры
- •2.2 Транзисторные структуры
- •2.3 Устойчивость радиационных изменений электрических параметров полупроводниковых приборов
- •3 Дозовые ионизационные эффекты в структуре Si/SiO2 и их влияние на характеристики полупроводниковых приборов и микросхем
- •3.1 Особенности строения структуры Si/SiO2
- •3.1.1 Особенности строения диоксида кремния
- •Кристаллические формы SiO2
- •Аморфный диоксид кремния
- •Дефекты в диоксиде кремния, отвечающие за накопление заряда
- •3.1.2 Особенности строения границы раздела Si/SiO2 Структура границы раздела
- •Дефекты на границе раздела Si/SiO2, отвечающие за накопление заряда
- •3.1.3 Влияние водорода и водородсодержащих соединений на свойства структуры Si/SiO2
- •3.2 Электрические методы исследований заряда в оксиде и плотности поверхностных состояний
- •3.2.1 Метод вфх
- •3.2.2 Метод подпороговых вах
- •3.2.3 Методы, основанные на измерении надпороговой вах транзисторов
- •3.2.4 Метод накачки заряда
- •3.3 Накопление и релаксация зарядов в структуре Si/SiO2 при радиационном облучении и отжиге
- •3.3.1 Общее описание процессов накопления заряда в структурах Si/SiO2 при радиационном облучении
- •3.3.2 Выход заряда
- •3.3.3 Перенос дырок через SiO2
- •3.3.4 Накопление и нейтрализация заряда на ловушках в оксиде
- •3.3.5 Механизм нейтрализации заряда в оксиде
- •3.3.6 Особенности накопления поверхностных состояний при радиационном облучении
- •3.3.7 Латентное накопление поверхностных состояний
- •3.3.8 Накопление поверхностных состояний в зависимости от интенсивности излучения
- •3.3.9 Отжиг поверхностных состояний
- •3.3.10 Механизм накопления поверхностных состояний
- •3.3.11 Граничные ловушки
- •3.4 Влияние космической радиации на характеристики приборов и микросхем, изготовленных на основе моп-структур
- •3.4.1 Изменение характеристик моп-транзисторов и кмоп-логических элементов при радиационном облучении
- •3.4.2 Влияние конструктивно-технологических характеристик на радиационную стойкость моп-структур
- •3.4.3 Радиационные эффекты в моп-структурах с ультратонкими оксидами
- •3.4.4 Некоторые особенности дозовых радиационных эффектов в мдп-структурах с альтернативными диэлектриками
- •3.4.5 Влияние полевых оксидов на радиационную стойкость ис
- •3.4.6 Особенности проявления дозовых радиационных эффектов в микросхемах, изготовленных по кни-технологии
- •3.5 Особенности радиационных испытаний приборов и микросхем на основе моп- и кмоп-структур
- •3.5.1 Корреляция между отдельными транзисторами и микросхемами
- •3.5.2 Наихудший электрический режим
- •3.5.3 Влияние на радиационную стойкость высокотемпературной нагрузки (наработки) перед облучением
- •3.5.4 Выбор источников ионизирующих излучений при проведении радиационных испытаний моп и кмоп ис
- •3.5.5 Процедуры радиационных испытаний, учитывающие влияние факторов низкой интенсивности облучения
- •4 Особенности деградации биполярных приборов и микросхем при воздействии низкоинтенсивного ионизирующего излучения (эффект eldrs)
- •4.1 Влияние интенсивности излучения на радиационный отклик биполярных транзисторов
- •4.2 Влияние интенсивности излучения на радиационный отклик биполярных интегральных схем
- •4.3 Физические модели эффектов низкоинтенсивного облучения биполярных приборов и микросхем
- •4.4 Проблема экспериментального моделирования воздействия излучений низкой интенсивности на биполярные изделия
- •4.5 Выводы
- •5 Одиночные события в бис при воздействии отдельных заряженных частиц космического пространства
- •5.1 Основные виды и классификация одиночных событий
- •5.1.1 Краткое описание основных видов ос Обратимые одиночные сбои (seu)
- •Одиночные события радиационного защелкивания (sel)
- •Одиночный микродозовый эффект (sehe)
- •Одиночный эффект прерывания функционирования (sefi)
- •Эффект выгорания (seb)
- •Эффект пробоя диэлектрика (segr)
- •Одиночный эффект вторичного пробоя в моп-транзисторах (ses)
- •Одиночные события, связанные с импульсной переходной ионизационной реакцией (set)
- •5.1.2 Основные параметры чувствительности полупроводниковых приборов и микросхем к одиночным событиям
- •5.2 Физические процессы, приводящие к возникновению одиночных событий
- •5.2.1 Общее описание процессов возникновения одиночных событий
- •5.2.2 Образование носителей заряда (ионизация)
- •5.2.3 Рекомбинация неравновесных носителей заряда
- •5.2.4 Перенос неравновесных носителей
- •5.2.5 Сбор заряда
- •5.3 Экспериментальные методы исследования чувствительности изделий полупроводниковой электроники к одиночным событиям при воздействии тяжелых заряженных частиц и протонов
- •5.3.1 Эксперименты на ускорителях протонов
- •5.3.2 Эксперименты на ускорителях ионов
- •5.3.3 Эксперименты с изотопными источниками
- •5.3.4 Эксперименты с использованием ионных микропучков
- •5.3.5 Эксперименты с использованием имитаторов
- •Литература
3.3.2 Выход заряда
Если в оксиде присутствует поперечное электрическое поле, то после высвобождения электроны в зоне проводимости и дырки в валентной зоне сразу же начнут перемещаться в противоположных направлениях. Как уже упоминалось ранее, электроны сильно подвижны в диоксиде кремния и, как правило, быстро покидают его в течение пикосекунд [19, 20]. Однако, перед тем как покинуть оксид, некоторая часть электронов успевает прорекомбинировать с дырками в валентной зоне. Этот процесс называется начальной рекомбинацией. Величина начальной рекомбинации сильно зависит от электрического поля в оксиде, а также энергии и типа падающих ионизирующих частиц [13]. Вообще, сильно ионизирующие частицы создают плотные «колонки» заряда (треки), в которых скорость рекомбинации достаточно высока. С другой стороны, слабо ионизирующие частицы создают относительно изолированные зарядовые пары, и скорость рекомбинации будет ниже. Доля дырок, избежавших начальной рекомбинации, называется выходом заряда. В конечном итоге именно эти дырки будут определять заряд, накопленный при радиационном облучении в объеме диэлектрика, а также заряд ПС.
На рис. 3.11 показаны зависимости выхода заряда от напряженности электрического поля в оксиде для низкоэнергетических протонов, альфа-частиц, гамма-квантов (60Со) и рентгеновского излучения [13]. Из рисунка видно, что для всех типов ИИ с увеличением напряженности электрического поля уменьшается вероятность рекомбинации дырок с электронами и возрастает доля избежавших рекомбинации дырок. Принимая во внимание эффекты выхода заряда и рекомбинации электронно-дырочных пар, общее число генерированных в оксиде дырок Nh (за исключением эффектов дозового усиления), которые избежали начальной рекомбинации, можно записать в виде [13]
Nh = f(Eox) g0 D tox, (3.18)
где f(Eox) — выход заряда как функция электрического поля в оксиде; D — доза; tox — толщина оксида, см; g0 —зависящим от вида материала параметр, определяющий начальную плотность зарядовых пар, приходящуюся на дозу в 1 рад (значения g0 для GaAs, кремния и диоксида кремния приведены в табл. 3.1 [13]).
Рис. 3.11. Доля избежавших начальной рекомбинации дырок (выход заряда) при облучении рентгеновскими лучами, низкоэнергетическими протонами, гамма-квантами и альфа-частицами [13]
При переходе к дозе в единицах рад(SiO2) выражение (6) принимает вид
Nh = 8,11012 f(Eox) D tox. (3.19)
Если используется металлический или силицидный затвор, то Nh следует умножить на коэффициент дозового усиления. В предположении, что дырки высвобождаются равномерно по оксиду, максимальный сдвиг порогового напряжения до переноса дырок записывается в виде [13]
Vth max = – 1,910–8 f(Eox) D tox2. (3.20)
Таблица 3.1
Минимальная энергия для образования электронно-дырочной пары Ep, плотность и концентрация g0 электронно-дырочных пар на 1 рад для GaAs, кремния и диоксида кремния
Материал |
Ep, эВ |
Плотность, г/см3 |
g0, см–3/рад |
GaAs |
~ 4,8 |
5,32 |
~ 71013 |
Si |
3,6 |
2,328 |
41013 |
SiO2 |
17 |
2,2 |
8,11012 |
Выражение (3.20) получается путем интегрирования (3.19) по распределению заряда в оксиде.
