Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Радиационные эффекты в кремниевых интегральных схемах космического применения.doc
Скачиваний:
6
Добавлен:
01.07.2025
Размер:
19.29 Mб
Скачать

Ионизация при облучении гамма-квантами

Гамма-кванты производят ионизацию во всех твердых телах, что является наиболее важным эффектом этого типа излучения. Гамма-кванты взаимодействуют с материалом посредством трех различных процессов: фотоэлектрического эффекта, эффекта Комптона и образования электронно-позитронных пар [2, 3, 13]. Данные процессы проиллюстрированы на рис. 1.13. Основным результатом для каждого из этих эффектов является образование энергичных вторичных электронов.

а б в

Рис. 1.13. Схематическое изображение процессов, через которые осуществляется взаимодействие фотонов с материалом [13]: a — фотоэлектрический эффект; б — эффект Комптона; в —образование пар

Низкоэнергетические фотоны взаимодействуют с материалом преимущественно через фотоэлектрический эффект (см. рис. 1.13, а). В этом процессе падающий фотон возбуждает электрон, находящийся на внутренней оболочке атома мишени, до состояния с энергией, достаточно высокой для того, чтобы он покинул атом. Падающий фотон полностью поглощается. Таким образом, фотоэлектрический эффект создает свободные электроны (фотоэлектроны) и ионизированные атомы. В дополнение к этому, поскольку испускается фотоэлектрон, электрон на внешней орбите атома «падает» на место, освобожденное фотоэлектроном, в результате чего испускается низкоэнергетический фотон. В общем случае низкоэнергетический фотон не обладает энергией, достаточной для образования дополнительной электронно-дырочной пары, но в зависимости от энергии падающего фотона испускаемый электрон может генерировать многочисленные дополнительные электронно-дырочные пары.

Рис. 1.14. Области преобладания фотоэффекта, эффекта Комптона и образования пар в зависимости от энергии фотонов и заряда ядра атома мишени

При облучении материалов высокоэнергетическими фотонами доминируют процессы Комптоновского рассеяния. Эти процессы проиллюстрированы на рис. 1.13, б. Здесь при взаимодействии фотона с атомом часть его энергии передается электрону атома мишени, в результате чего энергия электрона становится достаточной для того, чтобы он покинул атом мишени. В результате Комптоновского рассеяния образуется фотон с меньшей энергией, который может взаимодействовать с другими атомами мишени. Он также может создать свободный электрон и ионизированный атом.

Образование электронно-позитронных пар имеет место только для очень высокоэнергетических фотонов (E > 3 МэВ). Этот процесс показан на рис. 1.13, в. При образовании пар падающий фотон сталкивается с атомом мишени, образуя электронно-позитронную пару. Позитрон имеет те же свойства, что и электрон (заряд и масса), за исключением того, что его заряд положительный. При образовании пары падающий фотон полностью уничтожается (аннигилирует).

Области энергий фотонов, при которых в зависимости от атомного номера мишени преобладает тот или иной процесс из рассмотренных выше, показаны на рис. 1.14 [13]. Здесь сплошные линии соответствуют равной вероятности возникновения различных эффектов. Из рис. 1.14 видно, что для кремния рентгеновские лучи, испускаемые низкоэнергетическим рентгеновским источником (типичное значение энергии кванта составляет 10 кэВ), будут преимущественно взаимодействовать посредством фотоэффекта, в то время как высокоэнергетическое (1,25 МэВ) гамма-излучение от источника 60Co будет главным образом приводить к комптоновскому рассеянию.