- •К.И. Таперо, в.Н. Улимов, а.М. Членов Радиационные эффекты в кремниевых интегральных схемах космического применения Аннотация
- •Содержание
- •Введение
- •1 Основы физики взаимодействия ионизирующих излучений с полупроводниками
- •1.1 Краткое описание радиационных характеристик в окружающем пространстве
- •1.1.1 Радиационные условия в космическом пространстве Внешние воздействующие факторы космического пространства
- •Источники ионизирующих излучений в космическом пространстве
- •1.1.2 Ионизирующие излучения ядерного взрыва
- •1.1.3 Ионизирующие излучения атомных электростанций
- •1.2 Величины, характеризующие ионизирующее излучение и его взаимодействие с веществом
- •1.2.1 Некоторые величины и единицы, характеризующие ионизирующее излучение и его поле
- •1.2.2 Некоторые величины и единицы, характеризующие взаимодействие ионизирующего излучения с веществом
- •1.2.3 Некоторые дозиметрические величины и единицы
- •Определение поглощенной дозы при постоянном значении лпэ ионизирующих частиц
- •Определение поглощенной дозы с учетом изменения лпэ ионизирующих частиц по мере прохождения их через образец
- •1.2.4 Некоторые величины и единицы, характеризующие изотопные источники ионизирующих излучений
- •1.3 Физические процессы при взаимодействии ионизирующих излучений с материалами электронной техники
- •1.3.1 Первичные радиационные эффекты при воздействии проникающей радиации на полупроводниковые материалы
- •1.3.2 Смещение атомов из узлов решетки при воздействии ионизирующих излучений
- •Смещение атомов при облучении нейтронами
- •Смещение атомов при облучении заряженными частицами
- •Смещение атомов при облучении гамма-квантами
- •1.3.3 Ионизация при воздействии проникающей радиации на полупроводниковые материалы Ионизация при облучении нейтронами
- •Ионизация при облучении заряженными частицами
- •Ионизация при облучении гамма-квантами
- •Эффект усиления дозы
- •1.3.4 Ядерные превращения при воздействии ионизирующих излучений
- •1.3.5 Термостабильные радиационные центры в полупроводниках
- •1.3.6 Изменение электрофизических параметров полупроводниковых материалов при радиационном облучении
- •2 Изменение электрофизических параметров биполярных приборных структур вследствие введения структурных дефектов при радиационном облучении
- •2.1 Диодные структуры
- •2.2 Транзисторные структуры
- •2.3 Устойчивость радиационных изменений электрических параметров полупроводниковых приборов
- •3 Дозовые ионизационные эффекты в структуре Si/SiO2 и их влияние на характеристики полупроводниковых приборов и микросхем
- •3.1 Особенности строения структуры Si/SiO2
- •3.1.1 Особенности строения диоксида кремния
- •Кристаллические формы SiO2
- •Аморфный диоксид кремния
- •Дефекты в диоксиде кремния, отвечающие за накопление заряда
- •3.1.2 Особенности строения границы раздела Si/SiO2 Структура границы раздела
- •Дефекты на границе раздела Si/SiO2, отвечающие за накопление заряда
- •3.1.3 Влияние водорода и водородсодержащих соединений на свойства структуры Si/SiO2
- •3.2 Электрические методы исследований заряда в оксиде и плотности поверхностных состояний
- •3.2.1 Метод вфх
- •3.2.2 Метод подпороговых вах
- •3.2.3 Методы, основанные на измерении надпороговой вах транзисторов
- •3.2.4 Метод накачки заряда
- •3.3 Накопление и релаксация зарядов в структуре Si/SiO2 при радиационном облучении и отжиге
- •3.3.1 Общее описание процессов накопления заряда в структурах Si/SiO2 при радиационном облучении
- •3.3.2 Выход заряда
- •3.3.3 Перенос дырок через SiO2
- •3.3.4 Накопление и нейтрализация заряда на ловушках в оксиде
- •3.3.5 Механизм нейтрализации заряда в оксиде
- •3.3.6 Особенности накопления поверхностных состояний при радиационном облучении
- •3.3.7 Латентное накопление поверхностных состояний
- •3.3.8 Накопление поверхностных состояний в зависимости от интенсивности излучения
- •3.3.9 Отжиг поверхностных состояний
- •3.3.10 Механизм накопления поверхностных состояний
- •3.3.11 Граничные ловушки
- •3.4 Влияние космической радиации на характеристики приборов и микросхем, изготовленных на основе моп-структур
- •3.4.1 Изменение характеристик моп-транзисторов и кмоп-логических элементов при радиационном облучении
- •3.4.2 Влияние конструктивно-технологических характеристик на радиационную стойкость моп-структур
- •3.4.3 Радиационные эффекты в моп-структурах с ультратонкими оксидами
- •3.4.4 Некоторые особенности дозовых радиационных эффектов в мдп-структурах с альтернативными диэлектриками
- •3.4.5 Влияние полевых оксидов на радиационную стойкость ис
- •3.4.6 Особенности проявления дозовых радиационных эффектов в микросхемах, изготовленных по кни-технологии
- •3.5 Особенности радиационных испытаний приборов и микросхем на основе моп- и кмоп-структур
- •3.5.1 Корреляция между отдельными транзисторами и микросхемами
- •3.5.2 Наихудший электрический режим
- •3.5.3 Влияние на радиационную стойкость высокотемпературной нагрузки (наработки) перед облучением
- •3.5.4 Выбор источников ионизирующих излучений при проведении радиационных испытаний моп и кмоп ис
- •3.5.5 Процедуры радиационных испытаний, учитывающие влияние факторов низкой интенсивности облучения
- •4 Особенности деградации биполярных приборов и микросхем при воздействии низкоинтенсивного ионизирующего излучения (эффект eldrs)
- •4.1 Влияние интенсивности излучения на радиационный отклик биполярных транзисторов
- •4.2 Влияние интенсивности излучения на радиационный отклик биполярных интегральных схем
- •4.3 Физические модели эффектов низкоинтенсивного облучения биполярных приборов и микросхем
- •4.4 Проблема экспериментального моделирования воздействия излучений низкой интенсивности на биполярные изделия
- •4.5 Выводы
- •5 Одиночные события в бис при воздействии отдельных заряженных частиц космического пространства
- •5.1 Основные виды и классификация одиночных событий
- •5.1.1 Краткое описание основных видов ос Обратимые одиночные сбои (seu)
- •Одиночные события радиационного защелкивания (sel)
- •Одиночный микродозовый эффект (sehe)
- •Одиночный эффект прерывания функционирования (sefi)
- •Эффект выгорания (seb)
- •Эффект пробоя диэлектрика (segr)
- •Одиночный эффект вторичного пробоя в моп-транзисторах (ses)
- •Одиночные события, связанные с импульсной переходной ионизационной реакцией (set)
- •5.1.2 Основные параметры чувствительности полупроводниковых приборов и микросхем к одиночным событиям
- •5.2 Физические процессы, приводящие к возникновению одиночных событий
- •5.2.1 Общее описание процессов возникновения одиночных событий
- •5.2.2 Образование носителей заряда (ионизация)
- •5.2.3 Рекомбинация неравновесных носителей заряда
- •5.2.4 Перенос неравновесных носителей
- •5.2.5 Сбор заряда
- •5.3 Экспериментальные методы исследования чувствительности изделий полупроводниковой электроники к одиночным событиям при воздействии тяжелых заряженных частиц и протонов
- •5.3.1 Эксперименты на ускорителях протонов
- •5.3.2 Эксперименты на ускорителях ионов
- •5.3.3 Эксперименты с изотопными источниками
- •5.3.4 Эксперименты с использованием ионных микропучков
- •5.3.5 Эксперименты с использованием имитаторов
- •Литература
Смещение атомов при облучении нейтронами
Хотя воздействие нейтронов на ПП и ИС не характерно в условиях космического пространства, все же целесообразно рассмотреть физические процессы в полупроводниковых материалах при нейтронном облучении. Тем более что в настоящее время при испытаниях ПП и ИС на стойкость к воздействию радиационных факторов КП зачастую вместо облучения электронами и протонами проводится облучение гамма-квантами (набирается ионизационная составляющая поглощенной дозы) и нейтронами (набирается доза структурных повреждений).
Поскольку нейтрон не имеет электрического заряда, он рассеивается непосредственно на ядрах атомов кристалла-мишени. В зависимости от энергии нейтрона и массы ядра мишени рассеяние может быть упругим или неупругим.
Упругое рассеяние нейтронов наиболее вероятно при их энергии Е 300 эВ. При этом энергия, передаваемая первично смещенному атому определяется выражениями (1.6)–(1.8). Вследствие высокой проникающей способности быстрых нейтронов в веществах со средним атомным весом можно считать, что их рассеяние изотропно. В этом случае средняя энергия, передаваемая атому при упругом рассеянии будет равна
. (1.13)
В действительности быстрые нейтроны рассеиваются предпочтительнее в направлении своего распространения, и для более точного определения средней энергии, передаваемой выбитому атому, в выражение (1.13) переписывается в виде [3]
, (1.14)
где f — поправочный множитель, учитывающий анизотропию рассеяния быстрых нейтронов (для веществ со средним атомным весом и энергии нейтронов 1–2 МэВ величина f составляет 0,6–0,85 [3]).
Нейтроны, испускаемые при делении изотопа 235U, имеют спектр энергий от ~ 0,5 до 10 МэВ, при этом средняя энергия нейтронов составляет порядка 1,5 МэВ. При таких значениях энергии нейтронов можно считать, что имеют место только упругие столкновения. Поперечное сечение упругих столкновений, приводящих к смещениям, для нейтронов спектра деления очень слабо зависит от энергии нейтронов и для большинства полупроводниковых материалов составляет (2–3)10–24 см2.
При облучении полупроводниковых материалов нейтронами спектра деления средняя энергия, передаваемая выбитому атому, значительно превосходит пороговую энергию образования смещений. Вследствие этого при нейтронном облучении первично выбитые атомы образуют каскады дополнительных смещений, в результате чего в облучаемом кристалле образуются более сложные структурные дефекты, например, области разупорядочения.
Следует отметить, что в реальных условиях реакторного облучения энергетический спектр нейтронов может сильно отличаться от спектра деления в зависимости от характера замедлителя, помещенного между облучаемым объектом и тепловыделяющими элементами реактора [3]. Наличие замедлителей трансформирует спектр деления в достаточно широкий энергетический спектр от тепловых нейтронов (~ 0,025 эВ) до значений энергий быстрых нейтронов спектра деления. Это может существенно (до 10 раз) уменьшить значения максимальных и средних энергий, передаваемых атомам при облучении в реакторе по сравнению с облучением нейтронами спектра деления.
