- •Ю.А. Зайцев Начертательная геометрия. Решение задач
- •Введение
- •1. Теоретические основы и практика графического решения задач взаимного расположения прямой и плоскости
- •1.1. Положение прямой в пространстве и ее комплексные чертежи
- •1.1.1. Общие сведения
- •1.1.2. Построение проекций прямой общего положения
- •1.1.3. Построение проекций прямых уровня
- •1.1.4. Построение проекций проецирующих прямых
- •Вопросы для самопроверки
- •1.2. Положение плоскости в пространстве и ее комплексные чертежи
- •1.2.1. Способы задания плоскости на чертеже
- •1.2.2. Проецирующие плоскости
- •1.2.3. Плоскости уровня
- •1.2.4. Плоскости общего положения
- •Вопросы для самопроверки
- •1.3. Взаимное положение прямой и плоскости
- •1.3.1. Принадлежность прямой и точки плоскости
- •1.3.2. Прямая наибольшего наклона плоскости
- •1.3.2.1. Определение натуральной величины угла наибольшего наклона плоскости к плоскостям проекций
- •1.3.3. Параллельность прямой плоскости
- •1.3.4. Пересечение прямой с плоскостью
- •1.3.4.1. Пересечение прямой общего положения с проецирующей плоскостью
- •1.3.4.2. Пересечение проецирующей прямой с плоскостью общего положения
- •1.3.4.3. Пересечение прямой общего положения с плоскостью общего положения
- •1.3.5. Определение видимости проекций прямой и плоскости
- •1.3.6. Перпендикулярность прямой плоскости
- •Вопросы для самопроверки
- •1.4. Последовательность выполнения построений графического решения задачи 1 1
- •1.4.1. Построение исходного чертежа задачи
- •1.4.2. Построение проекций линии пересечения треугольников
- •1.4.3. Определение видимости проекций треугольников
- •Определение видимости фронтальных проекций треугольников
- •Определение видимости горизонтальных проекций треугольников
- •1.4.4. Определение натуральной величины треугольника авс
- •1.5. Многогранные поверхности
- •1.5.1. Образование многогранных поверхностей и построение их комплексных чертежей
- •1.5.2. Определение видимости проекций ребер многогранника
- •1.5.3. Принадлежность точки и прямой многогранной поверхности
- •Ι.5.4. Пересечение многогранника с прямой и плоскостью. Общие положения
- •Ι.5.4.Ι. Пересечение многогранника с проецирующей плоскостью
- •Ι.5.4.2. Пересечение многогранника с прямой. Общие положения
- •Ι.5.4.3. Пересечение многогранника с проецирующей прямой
- •Ι.5.4.4. Пересечение многогранника с прямой общего положения
- •Ι.5.4.5. Пересечение многогранника с плоскостью общего положения
- •Вопросы для самопроверки
- •1.6. Взаимное пересечение многогранных поверхностей. Общие положения
- •1.6.1. Взаимное пересечение пирамидальных и призматических поверхностей
- •Вопросы для самопроверки
- •1.7. Последовательность выполнения построений графического решения задачи 3 1
- •1.7.1. Построение исходного чертежа задачи
- •1.7.2. Построение проекций линии пересечения многогранников
- •1.8. Построение развёрток многогранных поверхностей. Общие положения
- •1.8.1. Построение развёрток пирамидальных поверхностей
- •1.8.2. Построение развёртки призматической поверхности способом нормального сечения
- •1.8.3. Построение развёртки призматической поверхности способом раскатки
- •1.9. Последовательность выполнения построений графического решения задачи 4 1
- •2. Теоретические основы и практика графического решения задач пересечения поверхностей вращения с прямой и плоскостью
- •2.1. Способы образования и задания на чертеже поверхностей вращения
- •2.2. Принадлежность точки поверхности вращения
- •Вопросы для самопроверки
- •2.3. Пересечение поверхностей вращения с плоскостью. Общие положения
- •2.4. Пересечение поверхностей вращения с плоскостями частного положения
- •Вопросы для самопроверки
- •2.5. Пересечение поверхностей вращения с прямой. Общие положения
- •2.5.1. Пересечение поверхностей вращения с проецирующей прямой
- •2.5.2. Пересечение поверхностей вращения с прямой уровня
- •Вопросы для самопроверки
- •2.6. Последовательность выполнения построений графического решения задачи 6 1
- •3. Теоретические основы и практика графического решения задач взаимного пересечения поверхностей вращения
- •3.1. Взаимное пересечение поверхностей вращения. Общие положения
- •3.2. Построение проекций линии взаимного пересечения поверхностей вращения способом вспомогательных секущих плоскостей
- •3.3. Построение проекций линии взаимного пересечения поверхностей вращения способом вспомогательных секущих сфер. Общие положения
- •3.3.1. Построение проекций линии взаимного пересечения поверхностей вращения способом концентрических секущих сфер
- •3.3.2. Построение проекций линии взаимного пересечения поверхностей вращения способом эксцентрических секущих сфер
- •3.4. Особые (частные) случаи взаимного пересечения поверхностей вращения
- •3.4.1. Пересечение поверхностей вращения с проецирующей поверхностью вращения
- •3.4.2. Взаимное пересечение поверхностей вращения двойного соприкосновения
- •Вопросы для самопроверки
- •3.5. Последовательность выполнения построений графического решения задачи 8 1
- •3.6. Последовательность выполнения построений графического решения задачи 9 1
- •3.7. Последовательность выполнения построений графического решения задачи 10 1
- •3.8. Последовательность выполнения построений графического решения задачи 11 1
- •3.9. Последовательность выполнения построений графического решения задачи 12 1
- •Литература Основная
- •Дополнительная
1.2.3. Плоскости уровня
Плоскость, параллельную какой-либо плоскости проекций, называют плоскостью уровня. Все точки этой плоскости одинаково удалены от той плоскости проекций, которой она параллельна. Любая геометрическая фигура, лежащая в плоскости уровня, проецируется на параллельную ей плоскость проекций в натуральную величину.
В системе трёх взаимно перпендикулярных плоскостей проекций плоскость уровня, параллельная одной из них, является одновременно проецирующей по отношению к двум другим. Поэтому на комплексном чертеже плоскость уровня задаётся следом на плоскости проекций, по отношению к которой является проецирующей.
П
Рис.
31
Фронтальный 2 и профильный 3 следы горизонтальной плоскости располагаются соответственно параллельно осям проекций X и Y.
На рис. 31, б представлен чертёж горизонтальной плоскости, в которой лежит треугольник ABC. На горизонтальную плоскость проекций он проецируется в натуральную величину.
Плоскость, параллельную фронтальной П2 плоскости проекций, называют фронтальной (рис. 32, а).
Любая геометрическая фигура, лежащая во фронтальной плоскости, проецируется на фронтальную плоскость проекций в натуральную величину.
Горизонтальный 1 и профильный 3 следы фронтальной плоскости располагаются параллельно соответственно осями проекций X и Z.
Н
Рис.
32
Плоскость, параллельную профильной П3 плоскости проекций, называют профильной (рис. 33, а).
В
Рис.
33
Фронтальный 2 и горизонтальный 1 следы профильной плоскости располагаются перпендикулярно оси проекций X.
На рис. 33, б представлен комплексный чертёж профильной плоскости , в которой лежит треугольник ABC. На профильную плоскость проекций он проецируется в натуральную величину.
1.2.4. Плоскости общего положения
Плоскость, не перпендикулярную и не параллельную ни одной из плоскостей проекций, называют плоскостью общего положения (рис. 34).
П
Рис.
34
Всякая геометрическая фигура, например прямая m, лежащая в плоскости общего положения, проецируется на любую из плоскостей с искажением.
Н
Рис.
35
