- •Ю.А. Зайцев Начертательная геометрия. Решение задач
- •Введение
- •1. Теоретические основы и практика графического решения задач взаимного расположения прямой и плоскости
- •1.1. Положение прямой в пространстве и ее комплексные чертежи
- •1.1.1. Общие сведения
- •1.1.2. Построение проекций прямой общего положения
- •1.1.3. Построение проекций прямых уровня
- •1.1.4. Построение проекций проецирующих прямых
- •Вопросы для самопроверки
- •1.2. Положение плоскости в пространстве и ее комплексные чертежи
- •1.2.1. Способы задания плоскости на чертеже
- •1.2.2. Проецирующие плоскости
- •1.2.3. Плоскости уровня
- •1.2.4. Плоскости общего положения
- •Вопросы для самопроверки
- •1.3. Взаимное положение прямой и плоскости
- •1.3.1. Принадлежность прямой и точки плоскости
- •1.3.2. Прямая наибольшего наклона плоскости
- •1.3.2.1. Определение натуральной величины угла наибольшего наклона плоскости к плоскостям проекций
- •1.3.3. Параллельность прямой плоскости
- •1.3.4. Пересечение прямой с плоскостью
- •1.3.4.1. Пересечение прямой общего положения с проецирующей плоскостью
- •1.3.4.2. Пересечение проецирующей прямой с плоскостью общего положения
- •1.3.4.3. Пересечение прямой общего положения с плоскостью общего положения
- •1.3.5. Определение видимости проекций прямой и плоскости
- •1.3.6. Перпендикулярность прямой плоскости
- •Вопросы для самопроверки
- •1.4. Последовательность выполнения построений графического решения задачи 1 1
- •1.4.1. Построение исходного чертежа задачи
- •1.4.2. Построение проекций линии пересечения треугольников
- •1.4.3. Определение видимости проекций треугольников
- •Определение видимости фронтальных проекций треугольников
- •Определение видимости горизонтальных проекций треугольников
- •1.4.4. Определение натуральной величины треугольника авс
- •1.5. Многогранные поверхности
- •1.5.1. Образование многогранных поверхностей и построение их комплексных чертежей
- •1.5.2. Определение видимости проекций ребер многогранника
- •1.5.3. Принадлежность точки и прямой многогранной поверхности
- •Ι.5.4. Пересечение многогранника с прямой и плоскостью. Общие положения
- •Ι.5.4.Ι. Пересечение многогранника с проецирующей плоскостью
- •Ι.5.4.2. Пересечение многогранника с прямой. Общие положения
- •Ι.5.4.3. Пересечение многогранника с проецирующей прямой
- •Ι.5.4.4. Пересечение многогранника с прямой общего положения
- •Ι.5.4.5. Пересечение многогранника с плоскостью общего положения
- •Вопросы для самопроверки
- •1.6. Взаимное пересечение многогранных поверхностей. Общие положения
- •1.6.1. Взаимное пересечение пирамидальных и призматических поверхностей
- •Вопросы для самопроверки
- •1.7. Последовательность выполнения построений графического решения задачи 3 1
- •1.7.1. Построение исходного чертежа задачи
- •1.7.2. Построение проекций линии пересечения многогранников
- •1.8. Построение развёрток многогранных поверхностей. Общие положения
- •1.8.1. Построение развёрток пирамидальных поверхностей
- •1.8.2. Построение развёртки призматической поверхности способом нормального сечения
- •1.8.3. Построение развёртки призматической поверхности способом раскатки
- •1.9. Последовательность выполнения построений графического решения задачи 4 1
- •2. Теоретические основы и практика графического решения задач пересечения поверхностей вращения с прямой и плоскостью
- •2.1. Способы образования и задания на чертеже поверхностей вращения
- •2.2. Принадлежность точки поверхности вращения
- •Вопросы для самопроверки
- •2.3. Пересечение поверхностей вращения с плоскостью. Общие положения
- •2.4. Пересечение поверхностей вращения с плоскостями частного положения
- •Вопросы для самопроверки
- •2.5. Пересечение поверхностей вращения с прямой. Общие положения
- •2.5.1. Пересечение поверхностей вращения с проецирующей прямой
- •2.5.2. Пересечение поверхностей вращения с прямой уровня
- •Вопросы для самопроверки
- •2.6. Последовательность выполнения построений графического решения задачи 6 1
- •3. Теоретические основы и практика графического решения задач взаимного пересечения поверхностей вращения
- •3.1. Взаимное пересечение поверхностей вращения. Общие положения
- •3.2. Построение проекций линии взаимного пересечения поверхностей вращения способом вспомогательных секущих плоскостей
- •3.3. Построение проекций линии взаимного пересечения поверхностей вращения способом вспомогательных секущих сфер. Общие положения
- •3.3.1. Построение проекций линии взаимного пересечения поверхностей вращения способом концентрических секущих сфер
- •3.3.2. Построение проекций линии взаимного пересечения поверхностей вращения способом эксцентрических секущих сфер
- •3.4. Особые (частные) случаи взаимного пересечения поверхностей вращения
- •3.4.1. Пересечение поверхностей вращения с проецирующей поверхностью вращения
- •3.4.2. Взаимное пересечение поверхностей вращения двойного соприкосновения
- •Вопросы для самопроверки
- •3.5. Последовательность выполнения построений графического решения задачи 8 1
- •3.6. Последовательность выполнения построений графического решения задачи 9 1
- •3.7. Последовательность выполнения построений графического решения задачи 10 1
- •3.8. Последовательность выполнения построений графического решения задачи 11 1
- •3.9. Последовательность выполнения построений графического решения задачи 12 1
- •Литература Основная
- •Дополнительная
3.4.2. Взаимное пересечение поверхностей вращения двойного соприкосновения
Выше отмечалось, что линия взаимного пересечения поверхностей вращения представляет собой в общем случае сложную пространственную кривую линию, состоящую из нескольких частей. Примером тому является, в частности, линия взаимного пересечения прямого конуса вращения с цилиндром. При этом отмечалось также, что в особых случаях линии взаимного пересечения поверхностей вращения могут представлять собой и плоские кривые (рис. 178).
Это происходит в том случае, когда в каждую из пересекающихся поверхностей вращения можно вписать общую сферу. Тогда линия пересечения поверхностей представляет собой пару плоских кривых линий. При расположении плоскости симметрии фигур параллельно, например, фронтальной плоскости проекций, проекции плоских кривых пересечения представляют собой отрезки прямых, соединяющие точки пересечения главных меридианов поверхностей вращения.
Рис. 178
На чертеже (рис. 179, а) прямой усеченный конус вращения пересекается с цилиндром, ось вращения которого является профильно-проецирующей прямой. Построение профильной проекции заданных на чертеже фигур свидетельствует о том, что пересекающиеся поверхности вращения имеют две общие точки 5 и 6, в которых они касаются друг друга.
Пересекающиеся поверхности вращения, имеющие две общие точки касания, называются поверхностями двойного соприкосновения.
Установлено, что линия пересечения поверхностей двойного соприкосновения распадается на пару плоских кривых, плоскости которых проходят через прямую, соединяющую точки прикосновения.
Рис. 179
Прямая 5-6 (53-63; 52-62) и является такой прямой, через которую проходят плоскости кривых взаимного пересечения поверхностей вращения. При заданном расположении фигур на чертеже фронтальные проекции плоских кривых пересечения представляют собой отрезки прямых: 12-42 и 22-32. Горизонтальные 11, 21, 31 и 41 проекции опорных точек кривых пересечения располагаются на следе главной меридиональной плоскости поверхностей вращения.
Не все проекции точек кривых пересечения будут видимыми на горизонтальной плоскости проекций. Положения фронтальных проекций точек видимости 72, 82, 92 и 102 – определяются в пересечении фронтального Т2 (тау два) следа горизонтальной секущей плоскости, проведённой через ось вращения цилиндра. Построение горизонтальных проекций опорных и произвольных точек плоских кривых пересечения производится с помощью параллелей усеченного конуса вращения. Соединив в определенной последовательности горизонтальные проекции точек, получают недостающие проекции плоских кривых пересечения.
На рис. 179, б представлено наглядное изображение взаимного пересечения поверхностей вращения двойного соприкосновения.
На рис. 180 показаны различные примеры расположения фронтальных проекций взаимного пересечения поверхностей двойного соприкосновения, используемых, например, при конструировании различного рода трубопроводов из листового материала.
Рис. 180
Сравнительная простота в построении проекций линии взаимного пересечения поверхностей вращения, имеющих двойное соприкосновение, предопределяет необходимость проведения предварительного анализа взаимного расположения проекций заданных на чертеже фигур с целью выявления наличия у них двойного соприкосновения.
