- •Ю.А. Зайцев Начертательная геометрия. Решение задач
- •Введение
- •1. Теоретические основы и практика графического решения задач взаимного расположения прямой и плоскости
- •1.1. Положение прямой в пространстве и ее комплексные чертежи
- •1.1.1. Общие сведения
- •1.1.2. Построение проекций прямой общего положения
- •1.1.3. Построение проекций прямых уровня
- •1.1.4. Построение проекций проецирующих прямых
- •Вопросы для самопроверки
- •1.2. Положение плоскости в пространстве и ее комплексные чертежи
- •1.2.1. Способы задания плоскости на чертеже
- •1.2.2. Проецирующие плоскости
- •1.2.3. Плоскости уровня
- •1.2.4. Плоскости общего положения
- •Вопросы для самопроверки
- •1.3. Взаимное положение прямой и плоскости
- •1.3.1. Принадлежность прямой и точки плоскости
- •1.3.2. Прямая наибольшего наклона плоскости
- •1.3.2.1. Определение натуральной величины угла наибольшего наклона плоскости к плоскостям проекций
- •1.3.3. Параллельность прямой плоскости
- •1.3.4. Пересечение прямой с плоскостью
- •1.3.4.1. Пересечение прямой общего положения с проецирующей плоскостью
- •1.3.4.2. Пересечение проецирующей прямой с плоскостью общего положения
- •1.3.4.3. Пересечение прямой общего положения с плоскостью общего положения
- •1.3.5. Определение видимости проекций прямой и плоскости
- •1.3.6. Перпендикулярность прямой плоскости
- •Вопросы для самопроверки
- •1.4. Последовательность выполнения построений графического решения задачи 1 1
- •1.4.1. Построение исходного чертежа задачи
- •1.4.2. Построение проекций линии пересечения треугольников
- •1.4.3. Определение видимости проекций треугольников
- •Определение видимости фронтальных проекций треугольников
- •Определение видимости горизонтальных проекций треугольников
- •1.4.4. Определение натуральной величины треугольника авс
- •1.5. Многогранные поверхности
- •1.5.1. Образование многогранных поверхностей и построение их комплексных чертежей
- •1.5.2. Определение видимости проекций ребер многогранника
- •1.5.3. Принадлежность точки и прямой многогранной поверхности
- •Ι.5.4. Пересечение многогранника с прямой и плоскостью. Общие положения
- •Ι.5.4.Ι. Пересечение многогранника с проецирующей плоскостью
- •Ι.5.4.2. Пересечение многогранника с прямой. Общие положения
- •Ι.5.4.3. Пересечение многогранника с проецирующей прямой
- •Ι.5.4.4. Пересечение многогранника с прямой общего положения
- •Ι.5.4.5. Пересечение многогранника с плоскостью общего положения
- •Вопросы для самопроверки
- •1.6. Взаимное пересечение многогранных поверхностей. Общие положения
- •1.6.1. Взаимное пересечение пирамидальных и призматических поверхностей
- •Вопросы для самопроверки
- •1.7. Последовательность выполнения построений графического решения задачи 3 1
- •1.7.1. Построение исходного чертежа задачи
- •1.7.2. Построение проекций линии пересечения многогранников
- •1.8. Построение развёрток многогранных поверхностей. Общие положения
- •1.8.1. Построение развёрток пирамидальных поверхностей
- •1.8.2. Построение развёртки призматической поверхности способом нормального сечения
- •1.8.3. Построение развёртки призматической поверхности способом раскатки
- •1.9. Последовательность выполнения построений графического решения задачи 4 1
- •2. Теоретические основы и практика графического решения задач пересечения поверхностей вращения с прямой и плоскостью
- •2.1. Способы образования и задания на чертеже поверхностей вращения
- •2.2. Принадлежность точки поверхности вращения
- •Вопросы для самопроверки
- •2.3. Пересечение поверхностей вращения с плоскостью. Общие положения
- •2.4. Пересечение поверхностей вращения с плоскостями частного положения
- •Вопросы для самопроверки
- •2.5. Пересечение поверхностей вращения с прямой. Общие положения
- •2.5.1. Пересечение поверхностей вращения с проецирующей прямой
- •2.5.2. Пересечение поверхностей вращения с прямой уровня
- •Вопросы для самопроверки
- •2.6. Последовательность выполнения построений графического решения задачи 6 1
- •3. Теоретические основы и практика графического решения задач взаимного пересечения поверхностей вращения
- •3.1. Взаимное пересечение поверхностей вращения. Общие положения
- •3.2. Построение проекций линии взаимного пересечения поверхностей вращения способом вспомогательных секущих плоскостей
- •3.3. Построение проекций линии взаимного пересечения поверхностей вращения способом вспомогательных секущих сфер. Общие положения
- •3.3.1. Построение проекций линии взаимного пересечения поверхностей вращения способом концентрических секущих сфер
- •3.3.2. Построение проекций линии взаимного пересечения поверхностей вращения способом эксцентрических секущих сфер
- •3.4. Особые (частные) случаи взаимного пересечения поверхностей вращения
- •3.4.1. Пересечение поверхностей вращения с проецирующей поверхностью вращения
- •3.4.2. Взаимное пересечение поверхностей вращения двойного соприкосновения
- •Вопросы для самопроверки
- •3.5. Последовательность выполнения построений графического решения задачи 8 1
- •3.6. Последовательность выполнения построений графического решения задачи 9 1
- •3.7. Последовательность выполнения построений графического решения задачи 10 1
- •3.8. Последовательность выполнения построений графического решения задачи 11 1
- •3.9. Последовательность выполнения построений графического решения задачи 12 1
- •Литература Основная
- •Дополнительная
Ι.5.4.4. Пересечение многогранника с прямой общего положения
На чертеже (рис. 69, а) представлены проекции пирамиды SABC и прямой m общего положения.
Из анализа взаимного расположения проекций фигур на чертеже следует, что прямая m пересекается с гранями SAB и SBC пирамиды.
З
Рис.
69
1. Заключают прямую общего положения во вспомогательную проецирующую плоскость. На чертеже (рис. 69, б) прямая m заключена в горизонтально-проецирующую плоскость ∑, след которой совпадает с горизонтальной m1 проекцией прямой m.
2. Строят многоугольник сечения пирамиды плоскостью ∑ (рис. 69, в).
3. Определяют положение проекций точек 4 и 5 пересечения прямой m с контуром фигуры сечения пирамиды вспомогательной секущей плоскостью ∑ (рис. 69, г). Отмеченные точки являются искомыми точками пересечения прямой m общего положения с многогранником – пирамидой SABC.
Н
Рис.
69
Рис.
70
Ι.5.4.5. Пересечение многогранника с плоскостью общего положения
Выше отмечалось, что задачу на построение сечения многогранника (рис. 71), например пирамиды SABC, плоскостью общего положения обычно сводят к многократному решению задачи на пересечение прямой с плоскостью. Для этого вначале строят вершины многоугольника сечения, как точки пересечения рёбер SA, SB и SC многогранника с секущей плоскостью. А затем соединяют отрезками прямых каждые две вершины многоугольника сечения, лежащие в одной и той же грани многогранника.
Р
Рис.
71
На чертеже (рис. 72, а) изображены: трёхгранная пирамида АВС и секущая плоскость (альфа) общего положения, заданная двумя пересекающимися прямыми: фронталью – f и горизонталью – h.
Анализируя расположение заданных фигур на чертеже (рис. 72, б), устанавливают, что основание пирамиды – треугольник АВС и прямая h расположены в горизонтальной плоскости проекций, так как их фронтальные проекции совпадают с осью X.
Э
Рис.
72
Выявив горизонтальные Е1 и F1 проекции точек, строят их фронтальные Е2 и F2 проекции. Прямая EF (E1F1, E2F2) представляет собой линию пересечения пирамиды плоскостью общего положения.
Далее предполагают, что с секущей плоскостью пересекаются рёбра SA, SB и SC боковой поверхности пирамиды.
Проекции прямых SA, SB и SC не параллельны и не перпендикулярны оси проекций X. Это значит, что каждая из прямых занимает в пространстве общее положение.
Тогда для построения проекций вершин сечения боковой поверхности пирамиды необходимо определить положения на чертеже проекций точек пересечения каждой из трёх прямых: SA, SB и SC, – с плоскостью .
Так как прямые SA, SB и SC и плоскость занимают общие положения, то для построения проекций точек их взаимного пересечения используют способ вспомогательных секущих плоскостей, в качестве которых чаще всего применяют проецирующие плоскости.
На чертеже (рис. 72, в) прямая SA заключена во вспомогательную фронтально-проецирующую плоскость ∑.
След ∑2 секущей плоскости совпадает с фронтальной S2A2 проекцией прямой SA.
Прямая 1222 представляет собой фронтальную проекцию линии взаимного пересечения двух плоскостей: заданной – и вспомогательной – ∑.
Строят горизонтальную 1121 проекцию линии пересечения плоскостей и на горизонтальной плоскости проекций рассматривают взаимное расположение проекций прямых SA и 1-2 .
Горизонтальные 1121 и S1A1 проекции прямых пересекаются в точке 41. Фронтальная 42 проекция точки пересечения располагается на следе ∑2 вспомогательной секущей плоскости.
Точка 4 (41, 42) является искомой точкой пересечения прямой SA с плоскостью , так как она принадлежит обеим фигурам:
- прямой SA, потому что проекции точки 4 расположены на соответствующих проекциях этой прямой,
- плоскости , потому что проекции точки 4 расположены на соответствующих проекциях 1 2, принадлежащей плоскости .
Для построения точки пересечения прямой SC с плоскостью заключает прямую во вспомогательную фронтально-проецирующую плоскость θ (тэта) (рис. 72, г).
След θ2 секущей плоскости совпадает с фронтальной S2C2 проекцией прямой SС. Прямая 1222 представляет собой фронтальную проекцию линии взаимного пересечения двух плоскостей: заданной – и вспомогательной – θ.
Рис.
72
Точка 5 (51, 52) является искомой точкой пересечения прямой SС с плоскостью , так как она принадлежит обеим фигурам:
- прямой SС, потому что проекции точки 5 располагаются на соответствующих проекциях этой прямой;
- плоскости , потому что проекции точки 5 располагаются на соответствующих проекциях прямой 1-2, принадлежащей плоскости .
Для построения точки пересечения прямой SB с плоскостью (рис. 72, д) заключают прямую во вспомогательную горизонтально-проецирующую плоскость Ф (фи).
След Ф1 секущей плоскости совпадает с горизонтальной S1B1 проекцией прямой SВ.
Прямая 1121 представляет собой горизонтальную проекцию линии взаимного пересечения двух плоскостей: заданной и вспомогательной – Ф.
Строят фронтальную 1222 проекцию линии взаимного пересечения двух плоскостей и на фронтальной плоскости проекций рассматривают взаимное расположение проекций прямых SB и 1-2. Фронтальные 1222 и S2B2 проекции прямых не пересекаются. Это означает, что в пространстве прямая SB не пересекается с плоскостью .
И
Рис.
73
Попарно соединив отрезками прямых каждые две одноименные проекции точек, лежащих в одной и той же грани многогранника, получают проекции F1, 41, 51, E1, F1 и F2, 42, 52, E2, F2 многоугольника сечения пирамиды SABC плоскостью общего положения, заданной двумя пересекающимися прямыми: фронталью – f и горизонталью – h.
И
Рис.
73
На чертеже (рис. 73, а) секущая плоскость (1, 2) и ребра боковой поверхности пирамиды: SА ( S1A1, S2A2), SC ( S1C1, S2C2 ) и SB (S1B1, S2B2) занимают общие положения относительно заданной системы плоскостей проекций.
Если же секущую плоскость общего положения преобразовать в проецирующую (рис. 73, б), то трудоёмкость построения проекций точек пересечения ребер пирамиды с плоскостью , весьма существенно уменьшится. В связи с тем, что секущая плоскость задана на чертеже двумя пересекающимися прямыми: фронталью – f и горизонталью – h, её легко преобразовать в проецирующую, например, способом замены плоскостей проекций.
Д
Рис.
73
Выполненное преобразование позволяет не только сразу выявить положения проекций 44 и 54 точек пересечения соответственно прямых SА и SC с секущей плоскостью (рис. 73, в), но и установить, что прямая SB в пространстве вовсе не пересекается с плоскостью , так как прямая S4 B4 не пересекается со следом 4 секущей плоскости. Значит, прямая SВ с плоскостью не пересекается. А в решении задачи по первому варианту не пересечение прямой SВ с плоскостью выявилось только с помощью построения линии пересечения плоскости вспомогательной горизонтально-проецирующей плоскостью Ф, проходящей через прямую SB. На основании принадлежности точек 1, 4, 2 и 5 соответствующим прямым строят их фронтальные проекции: 12, 42, 52 и 22. Попарно соединив отрезками прямых одноимённые проекции точек, лежащих в одной и той же грани, получают проекции: 11, 41, 51, 11 и 12, 42, 52, 12 – многоугольника сечения пирамиды SABC плоскостью общего положения.
