- •Содержание
- •1. Выбор и обоснование начальных и конечных параметров рабочего цикла для аэс с разными типами реакторов.
- •3.3.1. Экономическая целесообразность повышения начальных параметров пара
- •2. Обоснование необходимости использования регенеративного подогрева в схемах аэс. Влияние степени регенерации и числа регенеративных подогревателей на к.П.Д. Цикла.
- •1.2. Термодинамическая эффективность регенеративного подогрева
- •1.2.1. Термодинамическая эффективность
- •1.2 Термодинамическая эффективность использования системы пвд
- •3. Оптимальное число регенеративных подогревателей в схемах яэу. Оптимальные параметры регенеративного подогрева при произвольном числе подогревателей в тепловой схеме.
- •1.2.2. Распределение подогрева по ступеням
- •4. Реакторная установка ввэр-1000. Состав, основные технические характеристики.
- •5. Система компенсации давления блока с реактором типа ввэр-1000. Назначение, состав, принцип работы.
- •6. Система подпитки-продувки блока ввэр-1000. Назначение, состав, принцип работы
- •2.3 Принцип работы систем подпитки-продувки и организованных протечек
- •7. Система аварийного охлаждения активной зоны ввэр-1000 – пассивная часть. Назначение, состав, принцип работы.
- •Техническое описание саоз нд
- •Техническое описание саоз вд
- •Техническое описание пассивной части саоз
- •Состояние оборудования пассивной части саоз при работе блока на мощности
- •8. Система планового расхолаживания ввэр-440. Назначение, состав, принцип работы.
- •2.1 Назначение системы.
- •2.2. Состав системы (см. Схему № 2972-т л.3).
- •2.3 Назначение, характеристика и краткое описание оборудования.
- •2.3.1 Назначение, характеристика и краткое описание рур.
- •2.3.2 Назначение, характеристика и описание тк и отк.
- •2.3.3 Назначение, характеристика и описание насосов расхолаживания.
- •10. Спринклерная система ввэр- 1000. Назначение, состав, принцип работы.
- •11. Система аварийной питательной воды парогенераторов блока ввэр-1000. Назначение, состав, принцип работы.
- •1.2. Назначение системы аварийной подпитки парогенераторов
- •12. Система продувки и дренажей парогенератора ввэр-1000. Назначение, состав, принцип работы.
- •2.1 Назначение парогенераторов пг-1 4 и системы их продувки по 2 контуру
- •2.2 Основные технические характеристики пгв-1000м
- •2.3 Конструкция пгв-1000м
- •2.4 Состав, назначение, характеристика и краткое описание оборудования системы продувки пг по 2 контуру
- •2.6 Принцип работы парогенераторов пгв-1000м и системы их продувки по 2 контуру
- •13. Паропроводы острого пара двухконтурной яэу и защита пг и второго контура от превышения давления.
- •1.2. Назначение системы главных паропроводов. Связь с другими системами
- •2.1. Состав системы. Назначение элементов
- •2.4. Предохранительный клапан пг
- •Импульсный предохранительный клапан парогенератора.
- •Главный предохранительный клапан парогенератора.
- •16. Газовый контур рбмк-1000. Назначение, состав, принцип работы.
- •17. СПиР рбмк-1000. Назначение. Состав. Принцип действия.
- •18. Саор рбмк-1000. Назначение, состав, принцип действия.
- •19. Система локализации аварий рбмк-1000. Назначение, состав, принцип работы.
- •20, 21. Конденсационная установка. Назначение, состав, принципиальная схема.
- •1.1.1. Назначение конденсационной установки
- •1.2. Состав конденсационной установки
- •22. Схема включения основных эжекторов.
- •2.2.3. Основной эжектор эпо-3-150
- •2.2.3.1. Конструкция и описание работы эжектора эпо-3-150
- •2.2.1. Назначение и схема включения
- •23. Система технического водоснабжения. Типы систем технического водоснабжения. Основные потребители технической воды.
- •1.1 Назначение системы технического водоснабжения
- •1.2 Классификация систем тв
- •1.2.2.1. Оборотная система тв с прудом-охладителем
- •1.2.2.3. Оборотная система тв с градирней
- •1.2.3. Комбинированные системы тв
- •1.2.4. Типы систем тв
- •1.2.4.1. Напорная система
- •1.2.4.2. Напорно-самотечная система
- •24. Влияние температуры охлаждающей воды и кратности охлаждения на давление в конденсаторе.
- •1.3 Вакуум в конденсаторе
- •1.3.1. Температура конденсации отработавшего пара
- •25. Включение конденсатных насосов и боу в схему яэу.
- •1.1.2. Состав оборудования тракта основного конденсата
- •2.3. Работа системы
- •3.3. Блочная обессоливающая установка
- •26. Система основного конденсата. Схемы слива конденсата греющего пара, их сравнение между собой.
- •1.1.1. Тракт основного конденсата как часть системы регенерации пту
- •1.3.2.1. Схемы слива дренажа
- •1.3.2.2. Схемы с охладителями дренажа
- •27. Деаэратор, назначение, типы деаэраторов, принцип термической деаэрации. Схема обвязки деаэратора.
- •1.1. Назначение деаэрационной установки
- •1.2. Принцип работы термического деаэратора
- •1.4. Принципиальное устройство и основные типы деаэраторов
- •1.4.1. Струйно-капельные деаэраторы
- •1.4.2. Пленочные деаэраторы
- •1.4.3. Барботажные деаэраторы
- •1.4.5. Классификация деаэраторов по давлению
- •1.5. Схемы включения деаэраторов питательной воды
- •1.5.1. Предвключенная схема
- •1.5.2. Схема включения деаэратора с собственным отбором
- •1.5.3. Схема включения деаэратора с переключением на отбор с более высоким давлением
- •1.5.4. Работа деаэратора на скользящем давлении
- •28. Система питательной воды.
- •1.1. Назначение системы регенерации высокого давления
- •1.6 Принципиальная схема системы регенерации высокого давления
- •Из инструкции по эксплуатации
- •30. Системы вентиляции аэс и обращение с газообразными радиоактивными отходами.
- •Системы вентиляции
27. Деаэратор, назначение, типы деаэраторов, принцип термической деаэрации. Схема обвязки деаэратора.
1.1. Назначение деаэрационной установки
Деаэрационная установка предназначена для:
удаления растворенных в конденсате коррозионно-активных газов (О2 и СО2);
создания кратковременного запаса питательной воды на ТЭС и АЭС;
подогрева питательной воды в качестве смешивающего подогревателя системы регенеративного подогрева.
1.2. Принцип работы термического деаэратора
Принцип работы термического деаэратора основан на использовании закона Генри, связывающего растворимость газа в воде с его парциальным давлением над поверхностью воды.
Закон Генри гласит: "Равновесная концентрация растворенного в воде газа Сг (мг/кг) прямо пропорциональна парциальному давлению газа над поверхностью воды."
Величина константы Генри зависит от вида газа и температуры и не зависит от количественного состава и давления в системе.
Константа Генри определяется через коэффициент абсорбции газа.
Для эвакуации растворенных в воде газов - десорбции, необходимо нарушить фазовое равновесие между газами, находящимися над поверхностью воды и растворенными в ней.
Это проще всего можно выполнить нагревом воды до температуры насыщения при постоянном давлении. Парциальное давление газов над поверхностью воды при этом уменьшается практически до нуля, растворимость газов резко снижается и идет интенсивная дегазация.
1.4. Принципиальное устройство и основные типы деаэраторов
Для обеспечения эффективной деаэрации необходимы большая площадь и время контакта пара с нагреваемой водой. Увеличение площади контакта обеспечивается распылением воды на мелкие капли и струи; а также образованием тонких стекающих пленок. Увеличение времени контакта обеспечивается развитием деаэрационных колонок в высоту. Греющий пар подается снизу, а деаэрируемая "холодная" вода - сверху. При этом обеспечивается наиболее эффективная противоточная схема движения пара и воды.
Потоки воды с более высокой температурой (дренажи подогревателей, сепарат и др.) вводятся в промежуточную часть колонки. Выпар отводится из верхней части деаэрационной колонки. В зависимости от способа организации контакта пара и воды деаэраторы делятся на следующие основные типы:
струйно-капельные деаэраторы;
пленочные деаэраторы;
барботажные деаэраторы;
комбинированные деаэраторы.
1.4.1. Струйно-капельные деаэраторы
В струйно-капельном деаэраторе деаэрируемая вода системой дырчатых тарелок - 6 разделяется на струи, стекающие каскадом вниз. Снизу, навстречу струям воды, движется пар. Характер обтекания паром струй приближается к поперечному. Расположение нескольких тарелок по высоте колонки увеличивает общее время пребывания воды в ней. Площадь отверстий в тарелке составляет около 8% от общей площади тарелки.
Основной конденсат поступает через патрубок - 1 в открытую (или закрытую) кольцевую камеру - 3 (изображена открытой), откуда через порог переливается на первую тарелку, в которой имеется горловина для выхода выпара. Потоки "горячих" дренажей (от ПВД и др. узлов) подаются через патрубки - 2 и разбрызгиваются над промежуточными тарелками через перфорированную трубу - 4. Пар подводится в нижней части через патрубок - 5. Выпар удаляется в верхней части колонки.
Основные недостатки струйно-капельных деаэраторов:
большая высота деарационных колонок, превышающая 4 м;
повышенная металлоемкость и сложность внутренних устройств;
небольшой номинальный нагрев воды (10-15°С);
эффективность деаэратора резко понижается как при небольших перегрузках (на 10-15%), так и при нагрузках менее 40%;
низкая эффективность дегазации воды при струйном дроблении, вследствие эжектирования газов струями воды.
