- •Структурные особенности мышечных волокон.
- •Механизм мышечного сокращения.
- •Классификация нервных волокон. Нервные волокна типа а,в,с.
- •Химический путь синаптической передачи.
- •Явления конвергенции и иррадации.
- •6. Принцип доминанты Ухтомского в нервных центрах.
- •7. Реципрокное торможение.
- •8. Общая схема воздействия гуморального регуляторного механизма.
- •10.Гормоны нейрогипофиза, их физиологическое значение.
- •11. Значение йодосодержащих гормонов щитовидной железы. Физиологический эффект тиреокальцитонина. Значение паратгормона для организма.
- •12. Минералалокортикоиды, их значение в организме. Физиологические эффекты глюкокортикоидов.
- •13. Физиологическое значение андрогенов и эстрогенов в организме.
- •14.Значение адреналина для организма, функциональные эффекты.
- •15. Незаменимые аминокислоты, значение в организме.
- •16. Глюкоза в организме как основной источник энергии.
- •17. Значение жиров в организме, их энергетическая ценность.
- •18/Водный баланс, значение в организме. Обмен минералов, их значение в организме.
- •19. Температурный гомеостаз.
- •20.Центр терморегуляции, особенности строения центра терморегуляции.
- •21.Как проходят лучи через светопреломляющие среды глаза? Явления рефракции, аккомодации, дефекты.
- •22. Охарактеризуйте восприятие света и цвета, его простейшие нарушения.
- •23.Механизм фоторецепции (фотохимические процессы в сетчатой оболочке).
- •24. Механизм передачи звука в среднем ухе.
- •25. Строение Кортиевого органа. Состав и свойства перилимфы и эндолимфы.
- •26. Вестибулоспинальная, вестибулоокулярная, вестибуломозжечковые системы, значение.
- •27. Механизм рецепции вкусовой, обонятельной сенсорной систем.
- •28. Кожная рецепция, ее механизм.
- •29. Виды памяти и механизм формирования памяти.
- •30. Особенности сна и гипноза. Фазы сна (орто- и парадоксальный сон). Нейрохимия сна.
- •1. Физиологические свойства возбудимых тканей.
- •2. Мембранный потенциал, его величина.
- •3. Классификация мышц.
- •4. Функции скелетной и гладкой мускулатуры.
- •5.Виды сокращения мышц. Утомления мышц.
- •6. Физиологические особенности гладкой мускулатуры.
- •7. Законы проведения возбуждения по нервным волокнам.
- •8. Структурные элементы синапса. Классификация нейронов.
- •9. Общее понятие о рефлексах. Классификация рефлексов. Рефлекторная дуга, ее элементы.
- •11. Общие принципы классификации гормонов. Функциональная классификация гормонов.
- •12. Гипоталамо-гипофизарная система.
- •13. Понятие о рилизинг факторе, его значение в регуляции функции аденогипофиза.
- •14. Гомойотермия ,пойкилотермия, гетеротермия. Температурная карта и воздействующие на нее факторы.
- •15. Понятия об гипотермии, гипертермии.
- •16. Сократительный термогенез. Знчание «мышечного озноба».
- •17.Испарение – как основной путь теплоотдачи. Значение испарение.
- •18. Какова роль различных слоев сетчатки глаза?
- •19. Поведенческие и вегетативные проявления эмоции.
- •20. Роль нейромедиаторов, пептидов и биологически активных веществ в развитии сна и пробуждения.
- •21. Классификация условных рефлексов. Правила выроботки условных рефлексов.
- •22.Харатеризуйте слуховой анализатор. Наружное, среднее, внутренне ухо.
- •23. Морфофункциональное строение вкусовой сенсорной системы.
- •24. Аносмия, паросмия, дизосмия, обонятельные галлюцинации.
- •25. Человеческие эмоции. Виды, состав (субъективные и физиологические компоненты).
- •30. Классификация высшей нервной деятельности по и.П.Павлову.
- •Аксиллярная термометрия
- •Оральная термометрия
- •Ректальная термометрия
- •Определение основного обмена с помощью таблицы
- •Определение основного обмена с помощью формулы
- •Определение основного обмена с помощью номограммы
- •Определение реакции человеческого организма на низкую частоту при нагрузке холода
- •Определение значения кожных покровов при регуляции тепла
- •Выявление участвования пота в процессах экстраренального выведения жидкости и упорядочивания тепла.
Ф-МК-003/040
Экзаменационные вопросы сложного уровня
Структурные особенности мышечных волокон.
В мышечной ткани различают два основных типа мышечных волокон, между которыми имеются промежуточные, отличающиеся между собой, прежде всего особенностями обменных процессов и функциональными свойствами и в меньшей степени - структурными особенностями.
Волокна I типа - красные мышечные волокна - характеризуются, прежде всего, высоким содержанием в саркоплазме миоглобина (что и придает им красный цвет), большим числом саркосом, высокой активностью в них сукцинатдегидрогеназы (СДГ), высокой активностью АТФ-азы медленного типа. Эти волокна обладают способностью медленного, но длительного тонического сокращения и малой утомляемостью;
Волокна II типа - белые мышечные волокна - характеризуются незначительным содержанием миоглобина, но высоким содержанием гликогена, высокой активностью фосфорилазы и АТФ-базы быстрого типа. Функционально характеризуются способностью быстрого, сильного, но непродолжительного сокращения.
Мышца как орган состоит из мышечных волокон, волокнистой соединительной ткани, сосудов и нервов. Мышца - это анатомическое образование, основным и функционально ведущим структурным компонентом которого является мышечная ткань. Поэтому не следует рассматривать как синонимы понятия мышечная ткань и мышца.
Волокнистая соединительная ткань образует прослойки в мышце:
•эндомизий;
•перимизий;
• эпимизий;
•а также сухожилия.
Эндомизий окружает каждое мышечное волокно, состоит из рыхлой волокнистой соединительной ткани и содержит кровеносные и лимфатические сосуды, в основном капилляры, посредством которых обеспечивается трофика волокна. Коллагеновые и ретикулярные волокна эндомизия проникают в базальную пластинку мышечного волокна, тесно с ним связаны и передают силы сокращения волокна на точки скелета.
Перимизий окружает несколько мышечных волокон, собранных в пучки. В нем содержатся более крупные сосуды (артерии и вены, а также артериоло-венулярные анастомозы).
Эпимизий или фасция окружает всю мышцу, способствует функционированию мышцы, как органа. Любая мышца содержит все типы мышечных волокон в различном количественном соотношении. В мышцах, обеспечивающих поддержание позы, преобладают красные волокна. В мышцах, обеспечивающих движение пальцев и кистей, преобладают белые или переходные волокна. Характер мышечного волокна может меняться в зависимости от функциональной нагрузки и тренировки. Установлено, что биохимические, структурные и функциональные особенности мышечного волокна зависят от иннервации. Перекрестная пересадка эфферентных нервных волокон и их окончаний с красного волокна на белое и наоборот приводит к изменению обмена, а также структурных и функциональных особенностей в этих волокнах на противоположный тип.
Механизм мышечного сокращения.
Мы́шечное сокраще́ние — реакция мышечных клеток на воздействие нейромедиатора, реже гормона, проявляющаяся в уменьшении длины клетки. Это жизненно важная функция организма, связанная с оборонительными, дыхательными, пищевыми, половыми, выделительными и другими физиологическими процессами. Все виды произвольных движений — ходьба, мимика, движения глазных яблок, глотание, дыхание и т. п. осуществляются за счёт скелетных мышц. Непроизвольные движения (кроме сокращения сердца) — перистальтика желудка и кишечника, изменение тонуса кровеносных сосудов, поддержание тонуса мочевого пузыря — обусловлены сокращением гладкой мускулатуры. Работа сердца обеспечивается сокращением сердечной мускулатуры. В основном в регуляции мышечной активности участвуют нейроны, но есть случаи, когда сокращением гладкой мускулатуры управляют и гормоны (например, адреналин и окситоцин).
Сигнал о сокращении можно разделить на несколько этапов:
От клеточной мембраны до саркоплазматического ретикулума. Воздействие медиатора, выделившегося из мотонейрона, вызывает потенциал действия на клеточной мембране мышечной клетки, который передаётся далее с помощью специальных впячиваний мембраны, называемых Т-трубочками, которые отходят от мембраны внутрь клетки.
От Т-трубочек сигнал передаётся саркоплазматическому ретикулуму — особому компартменту из уплощенных мембранных пузырьков (эндоплазматической сети мышечной клетки), окружающих каждую миофибриллу. Этот сигнал вызывает открытие Ca2+-каналов в мембране ретикулума. Обратно ионы Ca2+ попадают в ретикулум с помощью мембранных кальциевых насосов — Ca2+-АТФазы.
От выделения ионов Ca2+ до сокращения миофибрилл.
Механизм сокращения мышц с учётом тропонина и тропомиозина Для того, чтобы контролировать сокращение, к актиновому филаменту прикрепляется белок тропомиозин и комплекс из трёх белков — тропонин (субъединицы этого комплекса называются тропонинами T,I и C). Тропонин C — близкий гомолог другого белка, кальмодулина. Через каждые семь субъединиц актина расположен только один тропониновый комплекс. Связь актина с тропонином I перемещает тропомиозин в положение, мешающее связи миозина с актином. Тропонин C связывается с четырьмя ионами Ca2+ и ослабляет действие тропонина I на актин, и тропомиозин занимает положение, не препятствующее связи актина с миозином. Источником энергии для сокращения мышечных волокон служит АТФ. При связывании тропонина с ионами кальция активируются каталитические центры для расщепления АТФ на головках миозина. За счет ферментативной активности головок миозина гидролизуется АТФ, расположенный на головке миозина, что обеспечивает энергией изменение конформации головок и скольжение нитей. Освобождающиеся при гидролизе АТФ молекула АДФ и неорганический фосфат используются для последующего ресинтеза АТФ. К миозиновой головке присоединяется новая молекула АТФ. При этом происходит разъединение поперечного мостика с нитью актина. Повторное прикрепление и отсоединение мостиков продолжается до тех пор, пока концентрация кальция внутри миофибрилл не снизится до подпороговой величины. Тогда мышечные волокна начинают расслабляться.
