Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
el_mashiny_Vosstanovlen.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
859.14 Кб
Скачать

20.Условие устойчивости двигателя постоянного тока.

При работе двигателя всегда возникают определенные возмущения режима работы (кратковременные колебания напряжения сети, случайные кратковременные изменения момента нагрузки на валу и так далее). Такие возмущения чаще всего бывают небольшими и кратковременными, однако при этом происходят, хотя также небольшие и кратковременные, нарушения равенства моментов установившегося режима работы [смотрите выражение (3) в статье "Общие сведения о двигателях постоянного тока"], вследствие чего возникает момент Mдин и изменяется скорость вращения.

Под устойчивостью работы двигателя понимается его способность вернуться к исходному, установившемуся режиму работы при малых возмущениях, когда действие этих возмущений прекратится. Иными словами, работа двигателя называется устойчивой, если бесконечно малые в пределе возмущения его работы вызывают лишь столь же малые изменения величин, характеризующих режим его работы, например скорости вращения, тока якоря и так далее. Двигатель неустойчив в работе, если подобные малые возмущения приводят к большим изменениям режима работы. При неустойчивой работе небольшие кратковременные возмущения вызывают либо непрерывное изменение режима (nIа и так далее) в каком-либо одном направлении, либо приводят к колебательному режиму с возрастанием амплитуд колебаний nIаи так далее. Естественно, что в условиях эксплуатации необходимо обеспечить устойчивый режим работы двигателя. При неустойчивости двигателя нормальная его работа невозможна, и обычно происходит авария.

Неустойчивая работа может быть также и у генераторов. В статье "Параллельная работа генераторов постоянного тока" была рассмотрена неустойчивость параллельной работы генераторов смешанного возбуждения при отсутствии уравнительного провода. Режим самовозбуждения генераторов постоянного тока (смотрите статью "Генераторы параллельного возбуждения") также, в сущности, представляет собой неустойчивый режим работы, так как iв и U непрерывно изменяются. Работа генератора параллельного возбуждения при Rн = Rв.кр также неустойчива, так как если несколько изменить величину Rв, то напряжение U значительно изменится, то есть возрастет до некоторого конечного значения или упадет почти до нуля.

Устойчивость работы двигателя зависит от вида его механической характеристики M = f(n) и от вида зависимости момента сопротивления на валу от скорости вращения Mст = f(n). Вид последней зависимости определяется свойствами рабочей машины, приводимой в движение двигателем. Например, у металлорежущих станков, если установка резца не изменяется, Mст ≈ const, то есть Mст не зависит от скорости вращения, а у вентиляторов и насосов Mст ∼ nв квадрате.

Рисунок 1. Устойчивый (а) и неустойчивый (б) режим работы двигателя

На рисунке 1, а и б изображены два характерных случая работы двигателя. Установившемуся режиму работы (M = Mст) со скоростью вращения n0соответствует точка пересечения указанных двух характеристик.

Если зависимости M = f(n), и Mст = f(n) имеют вид, изображенный на рисунке 1, а, то при случайном увеличении n в результате возмущения на Δnтормозной момент Mст станет больше движущего M (Mст> M) и поэтому двигатель будет затормаживаться, что заставит ротор вернуться к исходной скорости n0. Точно так же, если в результате возмущения скорость двигателя уменьшится на Δn, то будет Mст < M, поэтому ротор станет ускоряться и снова будет n = n0. Таким образом, в рассматриваемом случае работа устойчива. Как следует из рисунка 1, а, при этом

(2)

что и является признаком, или критерием, устойчивости работы двигателя.

При зависимостях M = f(n) и Mст = f(n) вида рисунка 1, б работа неустойчива. Действительно, при увеличении n от n = n0 до n = n0 + Δn будет M > Mст, возникнет избыток движущего момента, скорость nначнет нарастать, причем избыточный момент M – Mст увеличится еще больше, n еще возрастет и так далее. Если в результате возмущения n = n0 – Δn, то M < Mст и n будет непрерывно уменьшаться. Поэтому работа в точке M = Mст и n = n0 невозможна. Как следует из рисунка 1, б, в этом случае

(3)

что является признаком неустойчивости работы двигателя.

Из изложенного следует, что двигатель с данной механической характеристикой M = f(n) может работать устойчиво или неустойчиво в зависимости от характеристики Mст = f(n) рабочей машины. Возникновение неустойчивости наиболее вероятно при такой механической характеристики двигателя M = f(n) или n =f(M), когда M и n увеличиваются или уменьшаются одновременно (рисунок 1, б). В частности, в этом случае работа неустойчива при Mст = f(n) = const (например, металлорежущие станки). Поэтому двигателей с такими механическими характеристиками не строят.

Изложенное здесь в равной мере относится к устойчивости двигателей как постоянного, так ипеременного тока, а также любых видов двигателей.

22.23. Характеристики двигателя постоянного тока последовательного возбуждения

В двигателях последовательного возбуждения ток якоря одновременно является также током возбуждения: iв = Iа = I. Поэтому поток Фδ изменяется в широких пределах и можно написать, что

Фδ = kФ × I .

(1)

Коэффициент пропорциональности kФ в значительном диапазоне нагрузок, при I < Iн, является практически постоянным, и лишь при I > (0,8 – 0,9) Iн вследствие насыщения магнитной цепи kФначинает несколько уменьшаться.

При использовании соотношения (1) для двигателя последовательного возбуждения вместо выражений (7), (9) и (8), представленных в статье "Общие сведения о двигателях постоянного тока", получим

(2)

(3)

(4)

 

Рисунок 1. Естественная скоростная характеристика двигателя последовательного возбуждения

Скоростная характеристика двигателя [смотрите выражение (2)], представленная на рисунке 1, является мягкой и имеет гиперболический характер. При kФ = const вид кривой n = f(I) показан штриховой линией. При малых I скорость двигателя становится недопустимо большой. Поэтому работа двигателей последовательного возбуждения, за исключением самых маленьких, на холостом ходу не допускается, а использование ременной передачи неприемлемо. Обычно минимально допустимая нагрузка P2 = (0,2 – 0,25) Pн.

Естественная характеристика двигателя последовательного возбужденияn = f(M) в соответствии с соотношением (3) показана на рисунке 3 (кривая 1).

Поскольку у двигателей параллельного возбуждения M ∼ I, а у двигателей последовательного возбуждения приблизительно M ∼ I ² и при пуске допускается I = (1,5 – 2,0) Iн, то двигатели последовательного возбуждения развивают значительно больший пусковой момент по сравнению с двигателями параллельного возбуждения. Кроме того, у двигателей параллельного возбуждения n ≈ const, а у двигателей последовательного возбуждения, согласно выражениям (2) и (3), приблизительно (при Rа = 0)

n ∼ U / I ∼ U / √M .

Поэтому у двигателей параллельного возбуждения

P2 = Ω × M = 2π × n × M ∼ M ,

а у двигателей последовательного возбуждения

P2 = 2π × n × M ∼ √M .

Таким образом, у двигателей последовательного возбуждения при изменении момента нагрузки Mст = M в широких пределах мощность изменяется в меньших пределах, чем у двигателей параллельного возбуждения.

Поэтому для двигателей последовательного возбуждения менее опасны перегрузки по моменту. В связи с этим двигатели последовательного возбуждения имеют существенные преимущества в случае тяжелых условий пуска и изменения момента нагрузки в широких пределах. Они широко применяются для электрической тяги (трамваи, метро, троллейбусы, электровозы и тепловозы на железных дорогах) и в подъемно-транспортных установках.

Рисунок 2. Схемы регулирования скорости вращения двигателя последовательного возбуждения посредством шунтирования обмотки возбуждения (а), шунтирования якоря (б) и включения сопротивления в цепь якоря (в)

Отметим, что при повышении скорости вращения двигатель последовательного возбуждения в режим генератора не переходит. На рисунке 1 это очевидно из того, что характеристика n = f(I) не пересекает оси ординат. Физически это объясняется тем, что при переходе в режим генератора, при заданном направлении вращения и заданной полярности напряжения, направление тока должно измениться на обратное, а направление электродвижущей силы (э. д. с.) Eа и полярность полюсов должны сохраняться неизменными, однако последнее при изменении направления тока в обмотке возбуждения невозможно. Поэтому для перевода двигателя последовательного возбуждения в режим генератора необходимо переключить концы обмотки возбуждения.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]