Число сочетаний из n элементов по m
Число сочетаний обозначается Cnm и вычисляется по формуле:
Пример 7. Сколькими способами читатель может выбрать две книжки из шести имеющихся? Решение: Число способов равно числу сочетаний из шести книжек по две, т.е. равно:
Перестановки из n элементов
Определение 3. Перестановкой из n элементов называется любой упорядоченный набор этих элементов.
Пример 7a. Всевозможными перестановками множества, состоящего из трех элементов {1, 2, 3} являются: (1, 2, 3), (1, 3, 2), (2, 3, 1), (2, 1, 3), (3, 2, 1), (3, 1, 2).
Число различных перестановок из n элементов обозначается Pn и вычисляется по формуле Pn=n!.
Пример 8. Сколькими способами семь книг разных авторов можно расставить на полке в один ряд? Решение: эта задача о числе перестановок семи разных книг. Имеется P7=7!=1*2*3*4*5*6*7=5040 способов осуществить расстановку книг.
Обсуждение. Мы видим, что число возможных комбинаций можно посчитать по разным правилам (перестановки, сочетания, размещения) причем результат получится различный, т.к. принцип подсчета и сами формулы отличаются. Внимательно посмотрев на определения, можно заметить, что результат зависит от нескольких факторов одновременно. Во-первых, от того, из какого количества элементов мы можем комбинировать их наборы (насколько велика генеральная совокупность элементов). Во-вторых, результат зависит от того, какой величины наборы элементов нам нужны. И последнее, важно знать, является ли для нас существенным порядок элементов в наборе. Поясним последний фактор на следующем примере.
Пример. На родительском собрании присутствует 20 человек. Сколько существует различных вариантов состава родительского комитета, если в него должны войти 5 человек? Решение: В этом примере нас не интересует порядок фамилий в списке комитета. Если в результате в его составе окажутся одни и те же люди, то по смыслу для нас это один и тот же вариант. Поэтому мы можем воспользоваться формулой для подсчета числа сочетаний из 20 элементов по 5. Иначе будут обстоять дела, если каждый член комитета изначально отвечает за определенное направление работы. Тогда при одном и том же списочном составе комитета, внутри него возможно 5! вариантовперестановок, которые имеют значение. Количество разных (и по составу, и по сфере ответственности) вариантов определяется в этом случае числом размещений из 20 элементов по 5.
Задача 1
Условие
В столовой предложено на выбор 6 блюд. Каждый день Вася берет некоторый набор блюд (возможно, не берет ни одного блюда), причем этот набор блюд должен быть отличен от всех наборов, которые он брал в предыдущие дни. Какое наибольшее количество дней Вася сможет питаться по таким правилам и какое количество блюд он в среднем при этом будет съедать за день?
Подсказка
Каждому набору блюд можно сопоставить противоположный набор, состоящий в точности из тех блюд, которых нет в исходном наборе.
Решение
Количество дней равно, очевидно, количеству различных наборов из 6 блюд. Для каждого блюда есть две возможности – быть выбранным или невыбранным. Поэтому количество дней равно 26. Каждому набору блюд можно сопоставить противоположный набор, состоящий в точности из тех блюд, которых нет в исходном наборе. Вместе в исходном и в противоположном наборе – 6 блюд, значит, в среднем приходится по 3 блюда на набор. Поскольку все 64 набора разбиваются на пары противоположных, то в среднем за эти 64 дня Вася съедал 3 блюда.
Ответ
64 дня, в среднем 3 блюда в день.
Варианты задачи 1
Вариант |
Условие задачи |
1 |
Сколькими способами можно разбить 14 человек на пары? |
2 |
Сколько существует десятизначных чисел, в записи которых имеется хотя бы две одинаковые цифры? |
3 |
Сколько существует четырёхзначных номеров (от 0001 до 9999), у которых сумма двух первых цифр равна сумме двух последних цифр? |
4 |
Сколькими способами можно расселить 15 гостей в четырех комнатах, если требуется, чтобы ни одна из комнат не осталась пустой? |
5 |
Поезду, в котором находится m пассажиров, предстоит сделать n остановок. а) Сколькими способами могут выйти пассажиры на этих остановках? б) Решите ту же задачу, если учитывается лишь количество пассажиров, вышедших на каждой остановке.
|
6 |
а) Найдите сумму всех трехзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4 (цифры могут повторяться). б) Найдите сумму всех семизначных чисел, которые можно получить всевозможными перестановками цифр 1, ..., 7.
|
7 |
Параллелограмм пересекается двумя рядами прямых, параллельных его сторонам; каждый ряд состоит из m прямых. Сколько параллелограммов можно выделить в образовавшейся сетке? |
8 |
На окружности отмечено десять точек. Сколько существует незамкнутых несамопересекающихся девятизвенных ломаных с вершинами в этих точках? |
9 |
Пассажир оставил вещи в автоматической камере хранения, а когда пришел получать вещи, выяснилось, что он забыл номер. Он только помнит, что в номере были числа 23 и 37. Чтобы открыть камеру, нужно правильно набрать пятизначный номер. Каково наименьшее количество номеров нужно перебрать, чтобы наверняка открыть камеру? |
10 |
Сколькими способами из полной колоды (52 карты) можно выбрать а) 4 карты разных мастей и достоинств? б) 6 карт так, чтобы среди них были представители всех четырех мастей?
|
Задача 2
