Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
74
Добавлен:
20.06.2014
Размер:
9.86 Mб
Скачать

11. Релаксационные генераторы

Мультивибратор (от мульти... и лат. vibro — колеблю), релаксационный генератор электрических колебаний разрывного типа, содержащий два усилителя, охваченных взаимной междукаскадной положительной обратной связью. Термин «М.», предложенный голландским физиком ван дер Полем, указывает на множество гармоник, содержащихся в спектре генерируемых колебаний (в этом смысле генератор синусоидальных колебаний — моновибратор). Классическая схема М. на двух ламповых резистивных усилителях с перекрёстными анодно-сеточными связями (рис. 1) известна под названием схемы Абрагама и Блоха; она близка к схеме «катодного реле», предложенной советским учёным М. А. Бонч-Бруевичем. Различают симметричные М., построенные по симметричной схеме (рис. 1), и несимметричные. У первых длительности T1 и T2 рабочих тактов (рис. 2), составляющие в сумме период колебаний Tn, одинаковы, у вторых — разные. Времена T1 и Т2 определяются в основном элементами М. R1 и R2, C1 и C2 (см. Генерирование электрических колебаний).

  Известно много вариантов М. на электронных лампах, транзисторах, тиристорах и интегральных схемах. Наиболее широко применяются М., построенные на транзисторах. Если используют транзисторы одного типа (рnр или npn), то усилители в таких М. возбуждаются поочерёдно; в период времени T1 в возбуждённом состоянии находится один усилитель, в период T2 — другой. Такие М. называются двухфазными. Чередование фаз М. определяется динамическим состоянием того из усилителей, который находится в невозбуждённом режиме; последний возбуждается тогда, когда действующее на его входе напряжение становится достаточным для отпирания закрытого транзистора. После этого возникает кратковременный регенеративный процесс (в течение которого оба усилителя возбуждены), приводящий к изменению состояния усилителей — опрокидыванию М. Если же в усилителях М. используются транзисторы разного типа, то оба усилителя возбуждаются одновременно и находятся в таком состоянии в течение времени T1; затем они почти одновременно переходят в невозбуждённое состояние на период времени Т2. Переход из возбуждённого состояния в невозбуждённое определяется соотношением сил токов в коллекторной и базовой цепях насыщенного транзистора усилителя. По принципу работы такой М. близок к транзисторному блокинг-генератору.

  М. применяют в качестве генераторов импульсов, делителей частоты, формирователей импульсов, бесконтактных переключателей и т. п. в устройствах автоматики, вычислительной и измерительной техники, в том числе в реле времени, задающих устройствах и формирователях ЦВМ. Как и другие релаксационные генераторы, М. может работать как в режиме автоколебаний, так и в заторможенном (ждущем) режиме (такой М. называется ждущим, или однотактным, и часто неправильно именуется одновибратором). При подаче управляющего сигнала (импульса запуска) ждущий М. возбуждается и генерирует один рабочий импульс длительностью T1, после чего снова переходит в состояние покоя (T2). Ждущие М. строят обычно по несимметричной схеме; наиболее широко они применяются для генерирования импульсов строго определённой формы.

  Кроме двухфазных, существуют многофазные (n-фазные) М., состоящие из n резистивных усилителей, охваченных одной общей и n междукаскадными обратными связями. С выходов n усилителей многофазного М. можно получить последовательность сдвинутых во времени и в пространстве импульсов, благодаря чему его часто используют в многоканальных системах отбора, передачи и преобразования информации (см. Импульсная техника).

 Релаксационный   генератор , релаксатор,  генератор  электрических негармонических колебаний, обычно обладающих широким спектром (см. Генерирование электрических колебаний). Основные элементы Р. г. — реактивный накопитель энергии (ёмкостный или индуктивный) и нелинейный элемент с вольтамперной характеристикой, имеющей падающий участок, благодаря чему такой элемент приобретает гистерезисные свойства (см. Гистерезис). Наличие этих свойств обусловливает чередование двух основных стадий работы Р. г. — стадии запасания в накопителе энергии от питающего источника постоянного тока (напряжения) и стадии релаксации, когда накопитель освобождается от значительной части энергии (она рассеивается в нелинейном элементе др. активных элементах Р. г., например резисторах). Соизмеримость максимально запасённой и теряемой накопителем энергии — характерная отличительная особенность Р. г. В качестве нелинейного элемента в Р. г. применяют газоразрядные приборы (тиратроны, неоновые лампы), электронные лампы, транзисторы, тиристоры, туннельные диоды и др. либо усилительный каскад (транзисторный, ламповый) с положительной обратной связью.

  К числу наиболее распространённых Р. г. относятся мультивибраторы, блокинг-генераторы, генераторы пилообразного напряжения (в частности, фантастроны). Для Р. г. типичен автоколебательный режим работы, при котором период  релаксационных  колебаний определяется параметрами Р. г. Из-за невысокой стабильности частоты (а следовательно, и периода) колебаний Р. г. такие  генераторы  часто синхронизируют от внешнего источника стабильных колебаний. Используется также ждущий режим работы, при котором Р. г. включается в результате воздействия сигнала извне. Р. г. применяют в устройствах импульсной техники, в частности в телевизионной, радиолокационной и радиоизмерительной аппаратуре.

 Генераторы   линейно   изменяющегося  (пилообразного)  напряжения  (ГЛИН) применяют для развертки электронного луча в электроннолучевых трубках телевизионных, осциллографических и радиолокационных устройств, а также в схемах сранения для задержки импульсов во временя и т. п.

ГЛИН могут работать в режиме самовозбуждения и в ждущем режиме, когда период повторения пилообразного напряжения определяется запускающии импульсами. Режим самовозбуждения применяют, например, для получения непрерывной развертки в осциллографах, а ждущий режим - для получения ждущей развертки.

Напряжением пилообразной формы называется напряжение, которое в течение определенного времени нарастает или убывает пропорционально времени (линейно), а затем быстро возвращается к исходному уровню. Пилообразное напряжение может быть линейно нарастающим (рис. 1) или линейно падающим (рис. 2).

Рис. 1 - Линейно изменяющееся нарастающее напряжениеРис. 2 - Линейно изменяющееся падающее напряжение

Пилообразное напряжение характеризуется длительностью прямого или рабочего хода tр.х.в течении которого напряжение изменяется линейно; длительностью обратного хода tо.х., в течении которого напряжение обычно изменяется по экспоненте, и амплитудой Umax.

Принцип получения пилообразного напряжения зключается в медленном заряде (или разряде) кондера через большое сопротивление во время прямого хода и в быстром его разряде (или заряде) через малое сопротивление во время обратного хода. В упрощенном виде это показано на рисунке 3.

Рис. 3 - Принцип получения пилообразного напряжения

Кондер С заряжается при разомкнутом ключе К через резик Rз, а разряжается при замкнутом ключе К через резик Rр.

Такая схема не позволяет получить напряжения высокой линейности, поскольку повышение напряжения на кондере уменьшает зарядный ток. Для получения линейного напряжения кондер необходимо заряжать постоянным во все время заряда током. Поэтому смотрим на схемку:

Рис. 4 - Генератор пилообразного напряжения на транзисторах

Электронный ключ собран на транзисторе VT1 и управляется импульсами положительной полярности, транзистор VT2 - эмиттерный повторитель - является следящей связью. В исходном состоянии, когда на входе отсутствует прямоугольный импульс (рис. 5), транзистор VT1 закрыт и кондер С3 заряжается. Ток заряда все время остается постоянным, т. к. напряжение на верхнем выводе R2 следит за напряжением на кондере С3 на его нижнем выводе. Диод VD1 закроется и в течение всего времени дальнейшего формирования линейного нарастания напряжения будет закрыт. Формируется рабочий ход пилообразного напряжения.

Рис. 5 - Формирование прямого и обратного хода

При воздействии входного импульса транзистор VT1 открывается и кондер С3 быстро через него разряжается. Формируется обратный ход пилообразного напряжения. В это время кондер С2 подзаряжается до своего первоначального значения.

Соседние файлы в папке Электроника