
- •1Й вопрос. Кинематика материальной точки: система координат, радиус-вектор, скорость, ускорение, траектория, перемещение , путь.
- •2Й вопрос. Кинематика материальной точки: тангенсальное, нормальное и полное ускорение, движение по окружности.
- •3Й вопрос. Абсолютно твердое тело, Поступательное и вращательное движение. Кинематика вращательного движения: угловая скорость, угловое ускорение.
- •4Й вопрос. Законы Ньютона. Инерциальная система отсчета. Закон сохранения импульса. Замкнутая система. Центр инерции системы частиц. Закон сохранения центра инерции.
- •5Й вопрос. Движение тела с переменной массой. Реактивное движение. Уравнение Мищерского, Формула Циолковского.
- •6Й вопрос. Динамика вращения движения: момент силы ,момент импульса. Основной закон динамики вращ. Дв.
- •7Й вопрос. Момент инерции. Теорема Штейнера. Момент инерции однородных тел простейшей формы(стержень,цилиндр,шар).Расчет момента инерции однородного диска.
- •8Й вопрос. Основной закон динамики вращ. Дв. ,его выводы на примере одной частицы. Внешние и внутренние силы.
- •10Й вопрос. Потенциальная энергия взаимодействия. Полная мех. Энергия системы взаимодействующих друг с другом частиц ,находящихся во внешнем поле сил.
- •11Й вопрос. Потенциальная энергия во внешнем поле сил. Однородное и стационарное поле. Консервативные силы. Полная мех. Энергия. Работа консервативных и неконсервативных сил.
- •12Й вопрос. Закон всемирного тяготения. Гравитационное поле ,его напряженность.
- •13Й вопрос. Первая,вторая и третья космические скорости.
- •14Й вопрос. Неинерциальные системы отсчета. Силы инерции. Центробежная сила инерции .Сила Кориолиса.
- •15Й вопрос. Релятивистская механика. Постулаты Эйнштейна. Длительность событий в разных системах отсчета. Размеры тела в направлении движения и в направлении, поперечном движению.
- •I. Постулат Эйнштейна
- •16Й вопрос. Релятивистское выражение для импульса, полной и кинетической энергии.
- •Релятивистский импульс
- •17Й вопрос. Гидродинамика. Линии тока и трубки тока. Теорема о неразрывности струи. Течение идеальной жидкости. Уравнение Бернулли, Формула Торричелли.
- •18Й вопрос. Гидродинамика. Полное, динамическое и статическое давление. Трубка Пито, зонд, трубка Пито-Прандтля.
- •19Й вопрос. Вязкость. Сила внутреннего трения. Ламинарное и турбулентное течения. Число Рейнольдса.
- •20Й вопрос. Взаимодействие двух точечных электрических зарядов.Закон Кулона.
- •21Й вопрос. Потенциальная энергия взаимодействия двух точечных эл. Зарядов. Потенциал поля точечного заряда. Эквипотннциальные поверхности. Система эл. Зарядов. Потенциал поля,энергия взаимодействия.
- •22Й вопрос. Напряженность эл. Поля точечного заряда и системы зарядов.Принцип суперпозиции.Линии напряженности.Связь м-ду напряженностью эл. Поля и потенциалом.Эквипотенциальные поверхности.
- •23Й вопрос. Теорема Гауса для вектора напряженности эл. Поля. Вычисление поля бесконечной однородно заряженной плоскости, двух равномерно заряженных плоскостей.
- •26Й вопрос. Постоянный эл. Ток. Сила тока, плотность тока. Эдс, падение напряжения.
- •27Й вопрос. Закон Ома для однородного и неоднородного участка цепи в дифференциальной и интегральной формах.
- •28Й вопрос. Сопротивление проводников, их температурная зависимость. Сверхпроводимость,высокотемпературные сверхпроводники. Мощность тока. Закон Джоуля-Ленца, удельная тепловая мощность тока.
- •29Й вопрос. Разветвленные цепи.Правило Киргофа.
- •31ЙЗакон Био-Савара-Лапласа. Расчет поля бесконечного прямолинейного проводника с током.
- •32Й вопрос. Силы Лоренца. Силы взаимодеиствия движущегося заряда с прямолинейным проводником с током.
- •33Й вопрос. Закон Ампера. Сила взаимодействия двух параллельных бесконечно длинных прямых токов.
- •36Й вопрос. Электромагнитная индукция. Эдс индукции, правило Ленца. Потокосцепление. Токи Фуко. Использование вихревых токов в устройствах, скин-эффект.
- •37Й вопрос. Явление самоиндукции.Эдс индукции.Индуктивность контура.Расчет индуктивности тороида,соленоида.
- •39Й гармонические колебания.Фаза,частота.СКорость,ускорение частицы,совершающей гармонические колебания.(п-пи)
- •40Й математический и физический маятники.Энергия гармонических колебаний.
- •41Й сложение одинаково направленных гармонических колебаний с одной и той же частотой, но с различными начальными фазами и амплитудами.Векторная диаграмма.(нужен рис.)
- •42Й сложение взаимно-перпендикулярных колебаний с одинаковой частотой,но с различными фазами и амплитудами.Видщы траекторий:прямая,эллипс,окружность.
- •43Й затухающие колебания:коэффициент затухания, амплитуда, частота. Логарифмический декремент затухания.
- •45Й электрические колебания. Квазистационарные токи. Свободные незатухающие колебания в контуре без активного сопротивления. Формула томсона.
- •46Й свободные затухающие колебания.Частота затухающих колебаний.Коэффициент затухания.Логарифмический декремент затухания,добротность контура.
- •Коэффициент мощности.
- •Коэффициент мощности.
- •52Й уравнение волны, волновая поверхность. Плоская и сферические волны, гармонические волны.
- •53Й энергия упругой волны. Плотность энергии, плотность потока энергии, интенсивность.
- •54Й эФфект доплера для звуковых волн.
- •55Й плоская электромагнитная волна,её свойства.
- •56Й энергия электромагнитных волн.Вектор пойнтинга.Интенсивность света.
23Й вопрос. Теорема Гауса для вектора напряженности эл. Поля. Вычисление поля бесконечной однородно заряженной плоскости, двух равномерно заряженных плоскостей.
Теорема Гаусса: поток вектора напряженности сквозь сверическую поверхность радиуса r , охватывающую точечный заряд Q, находящийся в ее центре, равен Ф( с индексом E) = (циклич. инт. по S)E(с инд. n)dS=(Q•4Пи•R^2)/(4Пи•(эпсилон нулневое)•r^2)=Q/(эпсилон нулевое). Согласно этой формуле, каждый из интегралов, стоящих под знаком суммы, равен Q(i)•(эпсилон нулевое)
(циклич. интегр. по S)EdS=(циклич. интегр. по S)E(с инд. n)dS=(1/(эпсилон нулевое))•(знак суммы, n, i=1)Q(i). Эта формула выражает теорему Гаусса для электрического поля вакуума: поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на (эпсилон нулевое).
Поле заряженной бесконечной плоскости заряженой +. В качестве замкнутой поверхности мысленно строим цилиндр, основание которого параллельны заряженной плоскости и ось перпендикулярна ей. Так как образующая цилиндра параллельна линиям напряженности, то поток вектора напряженности сквозь боковую поверхность равен 0 и полный поток равен сумме потоков сквозь ее основание. Заряд, заключенный внутри построенной цилиндрической поверхности, равен S•сигма. Согласно теореме Гаусса, 2ELS=сигма•S/(эпсилон нулевое), откуда E=сигма/2(эпсилон нулевое), где сигма - поверхностная плотность заряда.
Е не зависит от длины цилиндра, т.е. напряженность поля на любых расстояниях одинакова по модулю, иными словами, поле равномерно заряженной плоскости однородно.
Поле беск. заряж. плоск. Пусть плоскости заряжены равномерно разноименными зарядами с +сигма и -сигма . Слева и справа от плоскости поля вычитаются, поэтому здесь напряженность поля равна нулю. В области между плоскостями E=E(с индексом +) + E(с индексом -), поэтому результирующая напряженность
E= сигма/(эпсилон нулевое)
24й вопрос. Эл.поле в диэлектриках, состоящих из полярных или неполярных молекул. Поляризованность диэлектрика, диэлектрическая восприимчивость. Связанные и сторонние заряды. Поверхостная и объемная плотность связанных зарядов.
В диэлектриках проводимость в 10^15 раз меньше чем в металлах.
Полярные молекулы - молекулы, обладающие постоянным дипольным моментом, к ним относится несимметричные молекулы (H20 HCl) (вектор E)=0, (вектор p) не равен нулю.
Неполярные молекулы - дипольный момент возникает только при помещение во внешнее поле.
Поляризованность - это дипольный момент единицы обьема. (вектор p) = канна(буква)•(эпсилон нулевое)•(вектор E) .
Связанные заряды - заряды, вносимые в диэлектрик извне или находятся вне его.
В каждой точке диалектрика результирующее поле (вектор E с инд. микро) = Естороннее+Есвязанное
Если силовые линии выходят из диэлектрика, то на поверхности формируются положительные заряды .
25й вопрос. Электростатика металлов. Эл. поле,потенциал и заряд во внутренней области металла и на его пов-ти. Электроемкость уединенного проаводника. Конденсаторы, их емкость. Емкость плоского конденсатора. Энергия заряженного проводника, конденсатора. Плотность энергии эл. поля.
Носителями тока в металле являются электроны на которые в общем случае действует эл сила и сила сопротивления. Fсопр=-альфа•V
Потенциал внутри металла постоянен. фи1-фи2=(инт. от 1 до 2)Edl=[E=0]=0
Т.к. металл электронейтрален то заряд компенсируется зарядами ионов.
(ро внутреннее)=0, Q(внутр.)=0
Потенциал на поверхности равен потенциалу внутри. Металл эквипотенциален.
При сообщение q металлу заряд распределяется так чтобы эпсилон(внутри)=0
Электроемкость уединенного проводника.
фи ~ q => фи=q/c , с - электроемкость
q=c•фи
При необходимости накопления большого q при малых значениях a используют что С при поднесении другого проводника возрастает.
С=q/u C=EE0S/d
C=4Пи•EE0Rr/R-r - сферической конденсатор;
С=2Пи•EE0L/lnR/r - циллиндрический конденсатор, где L - высота цилиндра.
Энергия уединенного проводника
U=фи•q/2, где q - суммарный заряд, сообщенный металлу.
q=C•фи, откуда U=q^2/2C=(c•фи^2)/2 или
U=q^2/2C=(c•U^2)/2
Поверхностная (w) и объемная плотности.
w=U/V=((эпсилон)•(эпсилон нулевое)•E^2)/2 = (т.к. D = (эпсилон)•(эпсилон нулевое)•E/2) - плотность (Дж/м^3)
w=HB/2 , где H - напряженность магнитного поля, B - магнитная индукция.