- •И. Д. Чешко
- •Экспертиза пожаров (объекты, методы, методики исследования)
- •Часть I
- •Глава 1 физические закономерности формирования очаговых признаков и методические принципы их выявления
- •1.1. Формирование очаговых признаков на конструкциях
- •1.2. О некоторых методических принципах выявления очага пожара и возможностях визуальных и инструментальных методов в поисках очага
- •Глава 2
- •2.1. Процесс обугливания древесины, свойства обугленных
- •Экспериментальные данные для расчета кинетических параметров процесса обугливания древесины вглубь
- •2.2. Методические принципы решения задачи определения температуры и длительности горения древесины. Работа на месте пожара. Отбор проб углей и подготовка их к исследованию
- •2.4. Определение остаточного содержания летучих веществ
- •2.5. Элементный анализ
- •2.7. Флуоресцентная спектроскопия
- •2.8. Термогравиметрический и дифференциальный
- •Результаты термогравиметрического и дифференциального термического анализа обугленных остатков древесины
- •Величина убыли массы образцов (%) в отдельных
- •2.9. Определение плотностных характеристик углей
- •2.10. Исследование обгоревших остатков древесно-стружечных плит
- •Глава 3
- •3.1. Некоторые особенности поведения полимерных
- •Температуры плавления некоторых полимеров, 0с [56]
- •Некоторые характеристики процесса термического разложения полимеров [56]
- •3.2. Свойства коксовых остатков полимеров и их связь с условиями горения
- •3.3. Определение удельного электросопротивления обугленных остатков полимеров
- •Удельное электросопротивление обугленных остатков поролона
- •3.4. Термогравиметрический и дифференциальный
- •3.5. Инфракрасная спектроскопия
- •Изменение соотношения оптических плотностей
- •При пиролизе некоторых полимерных материалов и ватина
- •3.6. Химический анализ водных экстрактов
- •Глава 4
- •4.1. Превращения лакокрасочных покрытий в ходе
- •Содержание углерода (% масc.) в нативных лкп и их остатках после нагрева (длительность изотермического нагрева - 20 мин)
- •4.2. Визуальная оценка степени термического поражения лкп. Отбор и подготовка проб для лабораторных
- •Изменение цвета нитроцеллюлозных (нц-), масляных (ма-) и пентафталевых (пф-) покрытий при нагревании
- •Изменение цветности воднодисперсионного покрытия при нагревании
- •4.3. Определение зольности
- •Ориентировочные температурные диапазоны нагрева окрашенной конструкции
- •4.4. Инфракрасная спектроскопия
- •Характеристические полосы поглощения
- •Данные о наличии характеристических полос в ик-спектрах
- •Перечень спектральных соотношений Dх/Dу и спектральных коэффициентов Кх для основных типов лкп
- •4.5. Натурные эксперименты
- •Результаты исследования проб лкп (эмали нц-25, зеленой) при проведении натурного эксперимента
- •Глава 5
- •5.1. Визуальные признаки термических поражений
- •Окисные пленки, образующиеся на поверхности стали при нагревании, и их цвета (цвета побежалости) [83]
- •Температуры плавления меди: чистой и в контакте с расплавленными металлами [88]
- •Температуры самовоспламенения алюмомагниевых сплавов
- •Предельные давления кислорода, при которых возможно горение различных металлов [95]
- •Скорости горения металлов и сплавов в кислороде при давлении газа 1-10 мПа
- •5.2. Инструментальные методы исследования
- •5.3. Окалинообразование на пожаре и исследование окалины
- •5.3.1. Закономерности процесса окалинообразования.
- •Содержание кислорода в окалине, образующейся при нагревании стали в воздушной атмосфере
- •Дифракционные характеристики окислов железа
- •5.3.2. Методика рентгеноструктурного и химического анализа окалины. Определение температуры и длительности теплового воздействия на стальную конструкцию
- •5.4. Исследование холоднодеформированных изделий
- •5.4.1. Магнитный метод (измерение коэрцитивной силы
- •5.4.2. Определение микротвердости
- •Результаты измерения микротвердости болтов м 12 после их нагрева в динамическом режиме
- •5.4.3. Металлография
- •Изменение линейных размеров зерна и коэффициента формы зерна (к) при нагревании холоднодеформированных стальных изделий
- •5.4.4. Рентгеноструктурный анализ
- •Параметры съемки для определения полуширины рентгеновской линии при работе с кобальтовой рентгеновской трубкой [63]
- •Глава 6
- •6.1. Изменение структуры и свойств неорганических
- •6.1.1. Материалы с цементным и известковым связующим
- •Глубина прогрева бетонной конструкции до заданных температур [10]
- •6.1.2. Материалы с гипсовым связующим
- •Визуальные признаки термических поражений гипсовой штукатурки при различных температурах [10]
- •6.2. Основные методики исследования
- •6.2.1. Выбор объектов исследования, отбор и подготовка проб
- •6.2.2. Ультразвуковая дефектоскопия бетона и железобетона
- •6.2.3. Инфракрасная спектроскопия
- •6.2.3.1. Определение зон термических поражений и ориентировочной
- •Характеристические полосы поглощения в ик-спектрах гипса при различных температурах нагрева
- •6.2.3.2. Определение длительности нагрева неорганических строительных материалов
- •Дифракционные характеристики гидратных форм гипса [ ]
- •6.2.5. Весовой метод определения остаточного содержания термолабильных компонентов
- •Изменение массы образцов гипсовых плит (% масс.) в процессе нагрева в изотермических условиях
- •6.3. О возможностях исследования материалов, изготовленных обжиговым методом
- •6.3.1. Кирпич, керамическая плитка
- •6.3.2. Неорганические эмали на металле
- •Глава 7
- •Теплоты сгорания некоторых полимеров, конструкционных и отделочных материалов
- •Тепловые потенциалы отечественной жесткой мебели
- •Тепловые потенциалы отечественной мягкой мебели
- •8.1. Фиксация температурных зон на окружающих конструкциях
- •Изменение состава, структуры и свойств бетона при нагревании [127]
- •Часть II
- •Глава 1
- •1.1. Медные и алюминиевые проводники
- •1.1.1. Установление причины разрушения проводника (кз, перегрузка, тепловое воздействие пожара, механическое воздействие)
- •Морфологические признаки на поверхности
- •1.1.2. Дифференциация момента (первичности или вторичности) короткого замыкания медных проводников
- •Критерии дифференциации коротких замыканий
- •1.1.3. Дифференциация первичного и вторичного кз
- •Критерии дифференциации оплавлений алюминиевых проводников [11]
- •1.1.4. Использование результатов инструментальных исследований при формировании вывода о причине пожара
- •1.2. Трубы и металлорукава с электропроводкой, имеющие сквозные разрушения (прожоги)
- •Минимально допустимая толщина стенки трубы
- •Признаки первичного (вторичного) кз стальных оболочек
- •Признаки проплавления стальной трубы расплавленным алюминием и ее прожога дугой кз [11]
- •1.3. Электронагревательные приборы
- •1.3.1. Электрочайники
- •1.3.2. Электроутюги
- •1.3.3. Бытовые электрокипятильники
- •1.3.3.1. Кипятильники с трубкой из медных сплавов и стали (с покрытием)
- •1.3.3.2. Кипятильники с трубкой из алюминиевого сплава
- •1.3.4. Прочие нагревательные устройства с тэНами
- •1.4. Лампы накаливания и люминесцентные светильники
- •Температура на колбе и вблизи лампы накаливания [29,30]
- •Вероятность зажигания некоторых горючих материалов никелевыми частицами в зависимости от высоты их падения
- •1.5. Устройства электрозащиты, выключатели,
- •1.5.1. Плавкие предохранители
- •1.5.2. Автоматические выключатели (автоматы)
- •1.5.3. Электроустановочные изделия, коммутационные устройства
- •1.5.4. Выключатели в электро- радиоаппаратуре
- •Глава 2
- •2.1. Полевые методы обнаружения остатков лвж и гж
- •Цвета люминесценции в уф-свете пятен некоторых жидкостей на фильтровальной бумаге [62]
- •2.2. Осмотр места пожара, отбор и упаковка проб
- •2.3. Выделение остатков лвж и гж из объектов-носителей
- •Миксотропный ряд растворителей [74]
- •Средняя степень извлечения (% масс.) углеводородов модельной смеси с древесного угля
- •Средний выход углеводородных компонентов после концентрирования пентанового раствора эталонной смеси различными способами
- •2.4. Лабораторные исследования; общий методический подход
- •Минимальные количества (мл) бензина а-76 и осветительного керосина, остатки от сгорания которых обнаруживаются на поверхности древесины и обгоревших тканях
- •Некоторые методы фотометрического определения
- •2.5. Анализ газовой фазы над образцом и веществ,
- •2.6. Молекулярная спектроскопия в ик- и уф- области
- •Данные по интенсивности поглощения в уф-области экстрактов сажи, образующихся при сгорании снп
- •2.7. Газожидкостная хроматография
- •Состав н-алканов и их содержание в некоторых нефтепродуктах [99]
- •2.8. Тонкослойная хроматография
- •Значения Rf и цвета зон при проявлении индивидуальных углеводородов
- •Результаты тонкослойной хроматографии на силуфоле
- •Цвета пятен и Rf продуктов разделения красителей этилированных бензинов на силуфоле [94]
- •2.9. Флуоресцентная спектроскопия
- •2.10. Элементный анализ
- •Элементный состав некоторых марок моторных
- •Элементный состав некоторых смазок [83]
- •2.11. Экстрактивные вещества объектов-носителей,
- •2.12. "Нетрадиционные" инициаторы горения
- •Проявление хроматограмм
- •Глава 3
- •3.1. Возникновение пожара от источника зажигания
- •3.2. Самовозгорание
- •3.3. Дополнительная информация, получаемая
- •3.3.1. Исследование обугленных остатков древесины и других органических материалов.
- •Характеристики слоев древесного угля
- •Результаты измерения удельного электросопротивления карбонизованных остатков цилиндрового масла из масляной рубашки ванны n2
- •3.3.2. Исследование стальных конструкций и предметов
- •Результаты исследования проб окалины
- •Часть III
- •Глава 1
- •1.1. Термогравиметрический и дифференциальный
- •Сравнительные данные по определению температуры самовоспламенения бурых и каменных углей методом дта и классическим методом
- •Показатели пожарной опасности и термогравиметрические параметры некоторых опасных грузов [7]
- •1.2. Специальные приборы и методики
- •1.3. Пиролитическая газовая хроматография
- •Глава 2
- •2.1. Обнаружение остатков антипиренов в древесных углях
- •Данные о сохранности отдельных компонентов антипирирующих составов при сгорании пропитанной ими древесины
- •Результаты количественного определения фосфора до и после сжигания в образцах древесины, антипирированной составом дмф-551
- •2.2. Экспресс-методы исследования негоревшей
- •Глава 3
- •3.1. Общая схема исследования
- •3.2. Инфракрасная спектроскопия
- •3.2. Оптическая микроскопия.
- •3.3.1 Дифференциация обугленных остатков текстильных волокон
- •Морфологические признаки некоторых обгоревших волокон и тканей (по данным [42])
- •3.2.2. Дифференциация обгоревших растительных остатков и бумаги
- •3.4. Пиролитическая газовая хроматография
- •Параметры удерживания характерных компонентов продуктов пиролиза некоторых волокнообразующих полимеров при пиролитической гжх [52, 53]
- •Параметры удерживания характерных компонентов продуктов пиролиза (пгх) некоторых распространенных смесей полимеров [52]
- •3.5. Химический анализ; исследование продуктов
- •3.6. Исследование сажевых частиц и возможности установления природы сгоревшего материала
- •Средний размер частиц дыма различных материалов [54]
- •Элементный состав образцов копоти некоторых авиационных материалов [55]
- •Данные рентгенограмм копоти некоторых авиационных материалов [55]
- •Данные рентгенограмм отожженых образцов копоти [55]
- •Часть IV
- •4.1. Пожар в Библиотеке ан ссср (Ленинград)
- •4.2. Пожар во Фрунзенском универмаге (Ленинград)
- •4.3. Пожар на теплоходе "Приамурье" в порту г. Осака (Япония)
- •4.4. Пожар в Ленинградском технологическом институте им. Ленсовета
- •Результаты рентгеноструктурного анализа оплавленного медного проводника
Критерии дифференциации коротких замыканий
в медных проводниках [11]
Короткое замыкание до пожара |
Короткое замыкание во время пожара |
|
Осмотр |
||
1. Оплавленный участок вытянут вдоль оси проводника и локален
2. Поверхность капли - гладкая без газовых пор и вырывов 3. Если изоляция сохранена, она обуглена только изнутри |
1. По длине проводника могут наблюдаться небольшие шарообразные наплывы меди 2. На поверхности оплавления могут наблюдаться газовые поры и вырывы 3. При сохранении изоляции, она обуглена с двух сторон |
|
Рентгеноструктурный анализ Дифрактометрия |
||
1. Соотношение интегральных интенсивностей линий 111 закиси меди и металлической меди J Cu2O/JСu на примыкающем к оплавлению участке в два и более раз выше, чем на участке, отстоящем на 30 мм от места оплавления |
1. Соотношение интегральных интенсивностей линий 111 закиси меди и металлической меди J Cu2O/JСu на примыкающем к оплавлению участке в два и более раз ниже, чем на участке, отстоящем на 30 мм от места оплавления |
|
Фотометод |
||
1. Интенсивность линий закиси меди на рентгенограммах, снятых с примыкающего участка, выше интенсивности линий закиси меди на отстоящем участке (при одинаковой интенсивности линий меди) |
1. Интенсивность линий закиси меди на рентгенограммах, снятых с примыкающего участка, ниже интенсивности линий закиси меди на отстоящем участке (при одинаковой интенсивности линий меди) |
|
Металлографический анализ |
||
1. В месте оплавления наблюдается структура быстрой кристаллизации - столбчатые дендриты (при содержании кислорода в месте оплавления не более 0,39 % по ГОСТ 13. 938. 13-77) 2,а. В месте оплавления по границам дендритов наблюдается эвтектика Cu-Cu2O. Массовая доля кислорода в меди в пределах от 0,06 % до 0,39 % 2,б. Структура меди в месте оплавления состоит из эвтектики Cu-Cu2O (при содержании в месте оплавления 0,39 % кислорода) 2,в. Структура меди в месте оплавления состоит из эвтектики Cu-Cu2O с включениями первичных кристаллов Cu2O (при содержании в месте оплавления более 0,39 % кислорода) 3. Газовые раковины и поры отсутствуют |
1. В месте оплавления наблюдается равноосная литая структура
2,а. В месте оплавления по границам дендритов наблюдается эвтектика Cu-Cu2O. Массовая доля кислорода в меди не превышает 0,06 % 2,б. В месте оплавления по границам равноосных литых зерен эвтектика отсутствует
3. Внутри оплавлений имеются газовые раковины и поры |
|
Необходимо отметить, что перечисленные выше методы рентгеноструктурного анализа, металлографии, а также устанавливаемые с их помощью квалификационные признаки “первичности” и “вторичности” КЗ, могут быть применены при исследовании оплавленных проводов не только в обычной электросети, но и в однопроводной электросети постоянного тока, используемой на транспорте (автомобиль, самолет) и на некоторых других объектах. Такой вывод позволяют сделать результаты работы Н.М.Граненкова с соавторами [13]. В работе на специальном стенде имитировали короткие замыкания в сетях постоянного тока напряжением 12 и 27 вольт, а также переменного однофазного тока напряжением 115 вольт при контакте медного провода с пластинами из алюминия и стали. Содержание кислорода в окружающей среде варьировали в пределах 10-17 %, температуру отжига проводов - в пределах 300-650 0С. Дуговые оплавления исследовались методами РСА и металлографии по методикам [3, 8]. В результате авторы констатировали, что существенных различий в признаках “первичности” (“вторичности”) КЗ в однопроводных и двухпроводных электросетях не наблюдается [13].
Морфологический и элементный анализ
В работе [8] морфологический анализ рекомендуется в качестве составной части комплексного инструментального исследования медных, а также алюминиевых проводников. Выполняется он на любой модели растрового электронного микроскопа (РЭМа). Если РЭМ снабжен микроанализатором, то, наряду с исследованием морфологии, рекомендуется проводить элементный анализ тех же участков проводников.
Установление момента КЗ проводится на основании оценки совокупности морфологических признаков. У медных проводников это геометрическая форма зоны оплавления, протяженность зоны разрушения, дефекты хрупкого разрушения, толщина и вид тонкой структуры поверхностной пленки. Например, при первичном КЗ толщина поверхностной пленки у проводника в 2-3 раза больше, чем при вторичном, а протяженность зон разрушения при вторичном - наоборот, при прочих равных условиях, на порядок больше.
У алюминиевых проводников информативной является геометрическая форма зон оплавлений, вид тонкой структуры оплавленной поверхности, наличие остатков изоляции.
Дополнительным признаком, используемым для дифференциации, является элементный состав зоны оплавления. При первичном КЗ состав оплавленных проводников (и медных, и алюминиевых) не отличается от неоплавленных; при вторичном же КЗ в составе зоны оплавления обнаруживаются элементы, входящие в состав изоляции [8].
Информация, которую дает электронная микроскопия и рентгеноспектральный микроанализ, безусловно, может быть полезна при установлении первичности (вторичности) КЗ; к сожалению методы получения этой информации довольно сложны, а аппаратура дорога и малодоступна широкому кругу экспертов.
