
- •Теоретический раздел
- •Элементы электрических цепей.
- •Положительные направления тока и напряжения.
- •Источник напряжения и источник тока.
- •Сопротивление.
- •Индуктивность.
- •Емкость.
- •Законы электрических цепей
- •Топологические элементы схемы: ветви, узлы, контуры.
- •Распределение потенциала вдоль участка ветви. Потенциальная диаграмма.
- •Обобщенный закон Ома.
- •Законы Кирхгофа.
- •Составление баланса мощностей.
- •Преобразование схем электрических цепей
- •Преобразование схем электрических цепей.
- •Преобразование звезды в эквивалентный треугольник.
- •Методы расчета сложных электрических цепей
- •Методы расчета сложных электрических цепей.
- •Входные и передаточные проводимости.
- •Метод контурных токов.
- •Метод узловых напряжений.
- •Теоремы линейных цепей
- •Теоремы линейных цепей.
- •Электрические цепи периодического синусоидального тока и напряжения.
- •Мощность в электрических цепях периодического синусоидального тока.
- •Реактивные двухполюсники.
- •I класс.
- •III класс.
- •IV класс.
- •Режимы резонанса в электрических цепях
- •Резонанс напряжений.
- •Резонанс токов.
- •Индуктивно связанные электрические цепи Индуктивная связь. Эдс взаимной индукции. Взаимная индуктивность. Коэффициент связи .
- •Одноименные зажимы индуктивно связанных катушек.
- •Последовательное соединение индуктивно связанных катушек при согласном включении.
- •Последовательное соединение индуктивно связанных катушек при встречном включении.
- •Параллельное соединение индуктивно связанных катушек
- •Развязка индуктивных связей
- •Воздушный трансформатор
- •Практический раздел Индивидуальные практические работы Выбор варианта
- •Порядок выполнения лабораторных работ (индивидуальных практических работ) по курсу "тэц"
- •Оформление протокола и защита лабораторных работ
- •Правила оформления протокола лабораторных работ
- •Содержание протокола
- •Индивидуальная практическая работа № 1 исследование цепи постоянного тока методом узловых напряжений и методом эквивалентного генератора
- •Основные теоретические положения
- •Последовательность выполнения работы
- •Индивидуальная практическая работа № 2 исследование простых цепей синусоидального тока
- •Основные теоретические положения
- •Последовательность выполнения работы
- •Литература для выполнения индивидуальных практических работ
- •Контрольные работы Выбор варианта
- •Контрольная работа №1
- •Контрольная работа №2
- •Внешние ресурсы
- •Практикум
- •Закон Ома, законы Кирхгофа
- •Основные теоретические положения. Закон Ома
- •Законы Кирхгофа
- •Примеры расчета линейных электрических цепей по законам Ома и Кирхгофа
- •Решение
- •Решение
- •Метод наложения Основные теоретические положения
- •Примеры расчета линейных электрических цепей методом наложения
- •Решение
- •Метод контурных токов Основные теоретические положения
- •Примеры расчета линейных электрических цепей методом контурных токов
- •Решение
- •Метод узловых напряжений Основные теоретические положения
- •Примеры расчета линейных электрических цепей методом узловых напряжений
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Метод эквивалентного генератора Основные теоретические положения
- •Примеры расчета линейных электрических цепей методом эквивалентного генератора
- •Решение
- •Решение
- •Электрические цепи однофазного синусоидального тока. Комплексный метод расчёта электрических цепей. Баланс мощностей в цепях однофазного синусоидального тока. Основные теоретические положения
- •Синусоидальный ток в однородных идеальных элементах: резисторе, индуктивности, ёмкости. Временные и векторные диаграммы.
- •Баланс мощностей в цепях переменного тока
- •Примеры расчёта цепей однофазного синусоидального тока
- •Решение
- •Решение
- •Пример 6.3
- •Решение
- •Решение
- •Решение
- •Режимы резонанса в электрических цепях Основные теоретические положения
- •Примеры расчета электрических цепей в режиме резонанса
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Цепи с индуктивно–связанными элементами Основные теоретические положения
- •Примеры расчета схем с индуктивно–связанными элементами
- •Решение
- •Решение
- •Решение
- •Решение
- •Задачи для самоконтроля
- •Экзаменационные вопросы
- •Часть 1
Составление баланса мощностей.
Из закона сохранения энергии следует, что вся мощность, поступающая цепь от источников энергии, в любой момент времени равна всей мощности, потребляемой приемниками данной цепи.
То есть IPпотр. = Pист.
Мощность потребителей, которыми в цепях постоянного тока являются резисторы, определяется по формуле
Pпотр. = I2R
Т.к. ток входит в данное выражение в квадрате, то независимо от его направления, мощность потребления всегда положительна.
Мощность источников, которыми могут быть источники напряжения и источники тока, бывает и положительной и отрицательной.
Мощность источника э.д.с. определяется по формуле
а)
Pэ.д.с. = EI
где I – ток в ветви с источником э.д.с.
б)
Если э.д.с. и ток этой ветви совпадают по направлению (рис.19а), то мощность Pэ.д.с.
входит в выражение баланса со знаком «+»,
если не совпадают – то Pэ.д.с. – величина
Рис.19 отрицательная.
Мощность источника тока определяется по формуле:
Pи.т. = IU
Где I – значение тока источника, U - напряжение на его зажимах.
Если ток I и напряжение U действуют так, как показано на рис.19б, то мощность положительна; в противном случае она – отрицательна. Следовательно, при вычислении мощности источника тока необходимо определять величину и направление напряжения на его зажимах.
Задача:
Контрольные вопросы:
Что представляет собой электрическая схема. Что относится к «электрическим» и «геометрическим» элементам схемы.
Дать определение последовательного и параллельного соединений элементов цепи.
Понятие «контур» в электрической цепи.
Чем отличается активная ветвь от пассивной?
Потенциальная диаграмма, ее назначение.
Изложить правило выбора знаков при нахождении потенциалов точек.
Сформулировать обобщенный закон Ома. Какова область его применения.
Сформулируйте первый закон Кирхгофа. Как определить число узловых уравнений? Правило знаков при написании узлового уравнения.
Формулировка второго закона Кирхгофа. Как определить число контурных уравнений. Правило знаков при написании контурного уравнения.
Что понимают под балансом мощностей? Как определяется мощность источника напряжения, источника тока, приемника.
Мощность каких элементов (активных или пассивных) может быть отрицательной и что это означает?
Преобразование схем электрических цепей
Цель лекции №3.
Ознакомившись с данной лекцией, студенты должны знать:
Цель преобразования электрических цепей.
Четко различать участки с последовательным и параллельным соединениями при рассмотрении смешанного соединения проводов.
Уметь преобразовывать соединение треугольник в эквивалентную звезду и обратно.
Уметь преобразовать источник э.д.с. в источник тока и обратно.
Преобразование схем электрических цепей.
Целью преобразования электрических цепей является их упрощение, это необходимо для простоты и удобства расчета.
Одним из основных видов преобразования электрических схем является преобразование схем со смешанным соединением элементов. Смешанное соединение элементов – это совокупность последовательных и параллельных соединений, которые и будут рассмотрены в начале данной лекции.
Последовательное соединение.
На рис.20 изображена ветвь электрической цепи, в которой последовательно включены сопротивления R1, R2,…,Rn. Через все эти сопротивления проходит один и тот же ток I. Напряжения на отдельных участках цепи обозначим через U1, U2,…, Un.
Рис.20. Последовательное соединение.
По второму закону Кирхгофа напряжение на ветви
U=U1+U2+…+Un= IR1+IR2+…+IRn=I (R1+R2+…Rn)=IRэкв. (23)
Сумма сопротивлений всех участков данной ветви
Называется эквивалентным последовательным сопротивлением.
Параллельное соединение.
На рис.21 изображена схема электрической цепи с двумя узлами, между которыми включено n параллельных ветвей с проводимостями G1, G2,…, Gn. Напряжение между узлами U, оно одинаково для всех ветвей.
Рис.21. Параллельное соединение (показать преобразованное).
По первому закону Кирхгофа ток общей ветви
I=I1+I2+…+In=G1U+G2U+…+GnU=U (G1+G2+…+Gn)=UGэкв. (24)
Сумма проводимостей всех ветвей, соединенных параллельно
называется эквивалентной проводимостью.
В
случае параллельного сопротивления
двух ветвей (n=2)
обычно пользуются выражениями, в которые
входят сопротивления
и
.
Эквивалентное сопротивление двух параллельно соединенных ветвей равно:
.
Смешанное соединение.
На рис.22 показано смешанное соединение электрической цепи:
Рис.22. Смешанное соединение.
Эта схема легко приводится к одноконтурной. Эквивалентировать схему обычно начинают с участков наиболее удаленных от входных зажимов. Для схемы рис.22 – это участок e-A. Сопротивления R5 и R6 включены параллельно, поэтому необходимо вычислить эквивалентное сопротивление данного участка по формуле
Для понимания полученного результата можно изобразить промежуточную схему (рис.23).
Рис.23
Сопротивления R3, R4 и R/экв. соединены последовательно, и эквивалентное сопротивление участка c-e-f-d равно:
Rэкв.=R3+ R/экв.+R4.
После этого этапа эквивалентирования схема приобретает вид рис.24.
Рис.24
Затем находим эквивалентное сопротивление участка c-d и суммируем его с сопротивлением R1. Общее эквивалентное сопротивление равно:
.
Полученное сопротивление эквивалентно сопротивлению (рис.25) исходной схемы со смешанным соединением. Понятие “эквивалентно” означает, что напряжение U на входных зажимах и ток I входной ветви остаются неизменными на протяжении всех преобразований.
Рис.25
Преобразование треугольника в эквивалентную звезду.
Преобразованием треугольника в эквивалентную звезду называется такая замена части цепи, соединенной по схеме треугольником, цепью, соединенной по схеме звезды, при которой токи и напряжения в остальной части цепи сохраняются неизменными.
Т.е., под эквивалентностью треугольника и звезды понимается то, что при одинаковых напряжениях между одноименными зажимами токи, входящие в одноименные выводы, одинаковы.
Рис.26. Преобразование треугольника в звезду.
Пусть R12; R23; R31- сопротивления сторон треугольника;
R1; R2; R3- сопротивления лучей звезды;
I12; I23; I31- токи в ветвях треугольника;
I1; I2; I3- токи, подходящие к зажимам 1, 2, 3.
Выразим токи в ветвях треугольника через подходящие токи I1, I2, I3.
По второму закону Кирхгофа сумма падений напряжений в контуре треугольника равна нулю:
I12R12+I23R23+I31R31=0
По первому закону Кирхгофа для узлов 1 и 2
I31=I12-I1; I23=I12+I2
При решении этих уравнений относительно I12 получим:
Напряжение между точками 1 и 2 схемы треугольника:
Напряжение между этими же точками схемы звезды равно:
U12=I1R1-I2R2.
Т.к. речь идет об эквивалентном преобразовании, то необходимо равенство напряжений между данными точками двух схем, т.е.
Это возможно при условии:
(25)
Третье выражение получено в результате круговой замены индексов.
Исходя из выражения (25) формулируется следующее правило:
Сопротивление луча звезды равно произведению сопротивлений сторон треугольника, прилегающих к этому лучу, деленному на сумму сопротивлений трех сторон треугольника.
Выше было получено выражение для тока в стороне 1-2 треугольника в зависимости от токов I1 и I2. Круговой заменой индексов можно получить токи в двух других сторонах треугольника: