
- •Теоретический раздел
- •Элементы электрических цепей.
- •Положительные направления тока и напряжения.
- •Источник напряжения и источник тока.
- •Сопротивление.
- •Индуктивность.
- •Емкость.
- •Законы электрических цепей
- •Топологические элементы схемы: ветви, узлы, контуры.
- •Распределение потенциала вдоль участка ветви. Потенциальная диаграмма.
- •Обобщенный закон Ома.
- •Законы Кирхгофа.
- •Составление баланса мощностей.
- •Преобразование схем электрических цепей
- •Преобразование схем электрических цепей.
- •Преобразование звезды в эквивалентный треугольник.
- •Методы расчета сложных электрических цепей
- •Методы расчета сложных электрических цепей.
- •Входные и передаточные проводимости.
- •Метод контурных токов.
- •Метод узловых напряжений.
- •Теоремы линейных цепей
- •Теоремы линейных цепей.
- •Электрические цепи периодического синусоидального тока и напряжения.
- •Мощность в электрических цепях периодического синусоидального тока.
- •Реактивные двухполюсники.
- •I класс.
- •III класс.
- •IV класс.
- •Режимы резонанса в электрических цепях
- •Резонанс напряжений.
- •Резонанс токов.
- •Индуктивно связанные электрические цепи Индуктивная связь. Эдс взаимной индукции. Взаимная индуктивность. Коэффициент связи .
- •Одноименные зажимы индуктивно связанных катушек.
- •Последовательное соединение индуктивно связанных катушек при согласном включении.
- •Последовательное соединение индуктивно связанных катушек при встречном включении.
- •Параллельное соединение индуктивно связанных катушек
- •Развязка индуктивных связей
- •Воздушный трансформатор
- •Практический раздел Индивидуальные практические работы Выбор варианта
- •Порядок выполнения лабораторных работ (индивидуальных практических работ) по курсу "тэц"
- •Оформление протокола и защита лабораторных работ
- •Правила оформления протокола лабораторных работ
- •Содержание протокола
- •Индивидуальная практическая работа № 1 исследование цепи постоянного тока методом узловых напряжений и методом эквивалентного генератора
- •Основные теоретические положения
- •Последовательность выполнения работы
- •Индивидуальная практическая работа № 2 исследование простых цепей синусоидального тока
- •Основные теоретические положения
- •Последовательность выполнения работы
- •Литература для выполнения индивидуальных практических работ
- •Контрольные работы Выбор варианта
- •Контрольная работа №1
- •Контрольная работа №2
- •Внешние ресурсы
- •Практикум
- •Закон Ома, законы Кирхгофа
- •Основные теоретические положения. Закон Ома
- •Законы Кирхгофа
- •Примеры расчета линейных электрических цепей по законам Ома и Кирхгофа
- •Решение
- •Решение
- •Метод наложения Основные теоретические положения
- •Примеры расчета линейных электрических цепей методом наложения
- •Решение
- •Метод контурных токов Основные теоретические положения
- •Примеры расчета линейных электрических цепей методом контурных токов
- •Решение
- •Метод узловых напряжений Основные теоретические положения
- •Примеры расчета линейных электрических цепей методом узловых напряжений
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Метод эквивалентного генератора Основные теоретические положения
- •Примеры расчета линейных электрических цепей методом эквивалентного генератора
- •Решение
- •Решение
- •Электрические цепи однофазного синусоидального тока. Комплексный метод расчёта электрических цепей. Баланс мощностей в цепях однофазного синусоидального тока. Основные теоретические положения
- •Синусоидальный ток в однородных идеальных элементах: резисторе, индуктивности, ёмкости. Временные и векторные диаграммы.
- •Баланс мощностей в цепях переменного тока
- •Примеры расчёта цепей однофазного синусоидального тока
- •Решение
- •Решение
- •Пример 6.3
- •Решение
- •Решение
- •Решение
- •Режимы резонанса в электрических цепях Основные теоретические положения
- •Примеры расчета электрических цепей в режиме резонанса
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Цепи с индуктивно–связанными элементами Основные теоретические положения
- •Примеры расчета схем с индуктивно–связанными элементами
- •Решение
- •Решение
- •Решение
- •Решение
- •Задачи для самоконтроля
- •Экзаменационные вопросы
- •Часть 1
Решение
Определим
ток в сопротивлении
методом эквивалентного генератора
напряжения.
.
Определим напряжение холостого хода по схеме рис 5.7
|
Рис. 5.7 |
,
где
.
Ток
определим по первому закону Кирхгофа:
Тогда:
.
Определим
внутреннее сопротивление ()
по схеме рис. 5.8.
|
Рис. 5.8 |
Ветви,
содержащие источники тока при определении
из расчета исключаются.
.
Определяем
ток
:
.
Ответ:
.
Электрические цепи однофазного синусоидального тока. Комплексный метод расчёта электрических цепей. Баланс мощностей в цепях однофазного синусоидального тока. Основные теоретические положения
Электрический ток и напряжение, изменяющиеся во времени по какому–либо закону, называют переменными.
Если форма кривой переменного тока и напряжения повторяется через равные промежутки времени, то их называют периодическими.
Наименьшее
время, через которое повторяется форма
переменного тока и напряжения, называют
периодом, обозначают
и
измеряют в секундах.
Число
периодов
в
1 секунду называют частотой
переменного
тока и напряжения, размерность частоты
в единицах СИ: 1 Герц [Гц].
.
Простейшими периодическими переменными током и напряжением являются вырабатываемые генераторами всех видов электростанций напряжение и токи синусоидальной формы:
Напряжение:
,
,
где:
,
– мгновенные значения тока и напряжения;
,
– амплитудные значения тока и напряжения;
,
– начальные фазы тока и напряжения;
–угловая
частота, (единица измерения
).
Разницу
начальных фаз напряжения и тока обозначили
и назвали углом сдвига фаз.
Для расчёта цепей синусоидального тока применяется метод комплексных амплитуд (символический метод расчёта), основанный на использовании теории комплексных чисел.
|
Из курса «Высшая математика» известно, что комплексное число можно представить в виде вектора на комплексной плоскости, а действительная и мнимая части комплексного числа есть проекции вектора на вещественную и мнимую оси (рис. 6.1). |
Рис 6.1 |
(В
теории электрических цепей буква
обозначает ток, поэтому за признак
мнимости принята буква
(
),
а само комплексное число обозначается
или точкой поверх буквы или подчёркиванием
буквы снизу:
,
):
,
,
где
– модуль;
– аргумент или фаза комплексного числа.
Синусоидальная функция условно представляется вектором, длина которого определяется максимальным или действующим его значением, а направление – её начальной фазой. Положительная начальная фаза откладывается от горизонтальной оси в сторону вращения векторов (против часовой стрелки).
Синусоидальный ток в однородных идеальных элементах: резисторе, индуктивности, ёмкости. Временные и векторные диаграммы.
а) Синусоидальный ток в активном сопротивлении
б) Синусоидальный ток в индуктивности
в) Синусоидальный ток в ёмкости
Если
,
то комплекс амплитудного и действующего
значений запишется соответственно:
,
.
Если
задан комплекс действующего значения
напряжения
,
то его мгновенное значение имеет вид:
.