- •8.Рішення систем лінійних алгебраїчних рівнянь методом послідовного виключення невідомих. Метод Гауса.
- •9.Рішення систем лінійних алгебраїчних рівнянь методом повного виключення невідомих. Метод Жордано Гауса.
- •10.Однорідні системи лінійних алгебраїчних рівнянь, фундаментальна система рішень
- •11.Вектори. Лінійні дії над векторами. Властивості. Довжина вектора. Кут між векторами. Відстань між 2-ма точками. Проекція вектора на вісь. Координати вектора.
- •12.Скалярний добуток 2-х векторів і його властивості. Довжина вектора. Кут між векторами.
- •13. Векторний добуток векторів та його властивості.
- •14. Змішаний добуток векторів та його властивості
- •15.Поділ відрізка в даному відношенні
- •16.Лінійний векторний простір.Лінійно-залежні і лінійно-незалежні системи векторів. Базис простору. Розкладання вектора за базисом.N-вимірний вектор
- •17.Векторне і канонічне рівняння прямої на площині
- •18.19. Рівняння прямої r2 на площині
- •20. Рівняння прямої з кутовим коефіцієнтом
- •21.Найпростіші задачі на пряму в просторі. (Кут між двома прямими, умови паралельності і перпендикулярності прямих , відстань від точки до прямої.
- •22.23.Площина в просторі.Векторне і загальне рівняння площини, його дослідження.
- •24.Рівняння площини, що проходить через 3 дані точки й у відрізках.
- •25.Найпростіші задачі на площині.Перетин 3-х площин.Кут між 2-ма площинами. Умови паралельності і перпендикулярності 2-х площин. Відстань від точки до площини.
- •26.Векторне канонічне параметричне рівняння прямої в просторі.
- •27.Найпростіші задачі на пряму і площину в просторі (кут між прямою і площиною, умова паралельності і перпендикулярності прямої і площини, точки перетину прямої і площини)
- •28. Поняття про криві 2-го порядку. Еліпс.
- •29.Поняття про криві 2-го порядку. Гіпербола.
- •30. Поняття про криві другого порядку. Парабола.
- •31. Постійні та змінні величини. Властивості функцій.
- •34. Нескінчено малі і нескінчено великі функції і їх властивості.
- •36. Визначні границі.
- •37.Непервність ф-ції в точці.Властивості неперервних ф-цій.
- •38.Точки розриву, класифікація точок розриву.
- •39. Похідна ф-ції.Необхідна умова існування ф-ції.Геометричний та економічний зміст похідної.
- •41.Похідна складної функції
- •42.Параметричнезадання функції.Похідна від функції заданої параметрично
- •43.Похідні вищих порядків.
- •44.Диференціал функції. Застосування диференціала в наближених обчисленнях. Геометричний зміст диференціала і його властивості. Інваріантність.
- •45.Основні теореми диференціального числення. Теореми Ролля, Лагранжа, Коші.
- •46. Правило Лопіталя.
- •47.Зростання й спадання ф-ї. Необхідна і достатня умови зростання(спадання) ф-ї.
- •48.Екстремум ф-ї. Необхідна умова існування екстремуму. (Теорема Ферма).
- •49..Опуклість і угнутість графіка ф-ї. Необхідна і достатня ознаки опуклості графіка ф-ї.
- •50. Асимптоти кривої.
- •52.Найбільше і найменше значення ф-ції на відрізку.
- •53.Первісна і невизначений інтеграл.Основні означення та найпростіші властивості невизначеного інтеграла.Таблиця інтегралів.
- •54.Інтегрування ф-цій, що містять квадратний тричлена
- •55.Раціональні дроби(означення).Прості раціональні дроби та їх інтегрування.
- •57.Інтеграли від ірраціональних ф-цій
- •58. Інтегрування деяких класів тригонометричних функцій.
- •59.Визначений інтеграл, як границя інтегральної суми. Теорема існування. Геометричний зміст визначеного інтеграла.
- •61. Основні методи обчислення визначеного інтеграла( безпосереднє, частинами).
50. Асимптоти кривої.
Означення. Пряма А наз. асимптотою кривої, якщо відстань δ від змінної т. М (х, y) кривої до цієї прямої при віддаленні т. М в ∞ → 0.
Означення. Пряма y=а наз. вертикальною асимптотою, якщо limf(x)= ±∞ (або limf(x)= ±∞, або limf(x)= ±∞). Тобто вертикальні асимптоти слід шукати серед т. розриву ІІ роду.
Пряма
лінія y=kx+b
наз. похилою асимптотою, де k=
lim
,
b=
lim(f(x)-
kх).
Якщо k=0,
то похилих асимптот немає.
y=b – горизонтальна асимптота.
Доведення.
Нехай т. М (х, y)
є l.
MP
┴ NP,
MP=δ,
δ→0, x→∞.
N(x,
y)
Є A,
φ
– кут між асимптотою і додатнім напрямом
осі ОХ. В ∆ МNPMP
– катет, MP=МNcosφ.
МN=
.
Якщо MP→0,
х→∞, то МN→0,
х→∞. МN=
у-у= f(x)-
(kх+b).
у=kх+b – р-ня асимптоти. Знайдемо –
lim
МN=
lim
(f(x)-
kх-
b)=
lim
х(
-k-
)=
lim
х(
-k)=0
→ lim(
-k)=0.
Отже, k=
lim
.
Якщо b
відоме, то із рівності lim
(f(x)-
kх-
b)=0
можна знайти b.
b=
lim(f(x)-
kх).
Таким чином, у=kх+b
– похила асимптота, k=
lim
,
b=
li
52.Найбільше і найменше значення ф-ції на відрізку.
Нехай ф-ція у=f(x) неперервна на відрізку [a,b] диференційована в кожній точці цього відрізка і має скінченне число критичних точок 1 роду на цьому відрізку.Необхідно знайти найб. та найм. Значення ф-ції на [a,b].
а)у=f(x) – монотонна (спадна або зростаюча), то найб. і найм. значення вона досягає на кінцях відрізку.
б)у=f(x) не є монотонною, то свого найб. і найм. значень на відрізку [a, b] вона може досягати в одній із критичних точок, що належ. даному відрізку.Для того, щоб знайти значення ф-ції необхідно:
1.Знайти критичні точки 1 роду.
2.Знайти значення ф-ції в критичних точках, що належать відрізку [a,b] і на кінцях відрізка.
3.Вибрати із одержаних значень найб. і найм.
Знаходження найб. і найм. значень ф-ції застосовується при рішенні багатьох практичних задач.
53.Первісна і невизначений інтеграл.Основні означення та найпростіші властивості невизначеного інтеграла.Таблиця інтегралів.
Нехай дано ф-цію у= f(x).Необхідно знайти таку ф-цію F(x), пох. від якої дор.f(x),тобто F’(x) = F(x).
Ф-ція F(x) наз. первісною для ф-ції F(x) на [a,b], якщо у всіх точках цього відрізку виконується рівністьF’(x)=f(x).
Первісна має наступні властивості:
1.Якщо F(x) є первісною для ф-ції f(x), то F(x)+c,c=const також є первісною для ф-ції f(x) .Дійсно (F(x)+c)’=F’(x)+0=f(x).
2.Якщо F1(x) і F2(x) для f(x) то F1(x)-F2(x)=c,c=const
Доведення
F1(x)-F2(x) – деяка ф-ція, що залежить від х .Тоді її похідна буде дор.F1‘(x)-F’2(x)=f(x)-f(x)=0 => F1(x)-F2(x)=c,c=const.
3.Якщо F(x) первісна f(x),то ф-ція f(ax) має первісну 1/a F(ax).Дійсно (1/aF(ax))’=1/a F’(ax)=f(ax)/
4.F(x) первісна для f(x), то ф-ція F(ax)+b) має первісну 1/bF(ax+b).Дійсно (1/aF (ax +b))’=1/aF’(ax+b)a=F’(ax+b)=f(ax+b).
Невизначеним інтегралом ф-ції F(x)на відрізку [a,b] наз. множина всіх первісних даної ф=ції на даному інтервалі виду F(x)+c де F(x) - одна із первісних, а c=const.
Властивості:
1.Похідна від невизначеного інтегралу дор. підінтегральній ф-ції.
2.Диференціал від невизначеного інтегралу дор. підінтегральному виразу.
3.Невизначений інтеграл від диференційованої ф-ції дор. цій ф-ції складеній з довільного стану.
4.Сталий множник можна виносити за знак інтегралу.
5.Сума або різниця ф-цій дор первісній суми або різниці цих ф-цій.
Таблиця інтегралів:
.Основні методи інтегрування (безпосереднє та частинами)1
.Безпосереднє – це знаходження невизначеного інтеграла з використанням його властивостей, таблиці інтегрування інтегралів і в разі необхідності тотожних перетворень підінтегральної ф-ції.
2.Інтегрування частинами – це знаходження інтеграла за допомогою спеціальної формули, що має назву формули інтегрування частинами. ∫xdv=uv-∫vdu.d(uv)=(uv)’dx=(u’v+uv’)dx=u’vdx+uv’dx=vdu+udv. ∫d(uv)= ∫vdu+∫udv. Uv=∫vdu+∫udv.
Ця формула заст. в тих випадках, коли під знаком інтегралу знах. добуток двох функцій: алгебраїчної та геометричної. Вираз розділяється на дві частини, які позначаються через “u” та “dv”. Після цього виконуємо обчислення за формулою.
