- •8.Рішення систем лінійних алгебраїчних рівнянь методом послідовного виключення невідомих. Метод Гауса.
- •9.Рішення систем лінійних алгебраїчних рівнянь методом повного виключення невідомих. Метод Жордано Гауса.
- •10.Однорідні системи лінійних алгебраїчних рівнянь, фундаментальна система рішень
- •11.Вектори. Лінійні дії над векторами. Властивості. Довжина вектора. Кут між векторами. Відстань між 2-ма точками. Проекція вектора на вісь. Координати вектора.
- •12.Скалярний добуток 2-х векторів і його властивості. Довжина вектора. Кут між векторами.
- •13. Векторний добуток векторів та його властивості.
- •14. Змішаний добуток векторів та його властивості
- •15.Поділ відрізка в даному відношенні
- •16.Лінійний векторний простір.Лінійно-залежні і лінійно-незалежні системи векторів. Базис простору. Розкладання вектора за базисом.N-вимірний вектор
- •17.Векторне і канонічне рівняння прямої на площині
- •18.19. Рівняння прямої r2 на площині
- •20. Рівняння прямої з кутовим коефіцієнтом
- •21.Найпростіші задачі на пряму в просторі. (Кут між двома прямими, умови паралельності і перпендикулярності прямих , відстань від точки до прямої.
- •22.23.Площина в просторі.Векторне і загальне рівняння площини, його дослідження.
- •24.Рівняння площини, що проходить через 3 дані точки й у відрізках.
- •25.Найпростіші задачі на площині.Перетин 3-х площин.Кут між 2-ма площинами. Умови паралельності і перпендикулярності 2-х площин. Відстань від точки до площини.
- •26.Векторне канонічне параметричне рівняння прямої в просторі.
- •27.Найпростіші задачі на пряму і площину в просторі (кут між прямою і площиною, умова паралельності і перпендикулярності прямої і площини, точки перетину прямої і площини)
- •28. Поняття про криві 2-го порядку. Еліпс.
- •29.Поняття про криві 2-го порядку. Гіпербола.
- •30. Поняття про криві другого порядку. Парабола.
- •31. Постійні та змінні величини. Властивості функцій.
- •34. Нескінчено малі і нескінчено великі функції і їх властивості.
- •36. Визначні границі.
- •37.Непервність ф-ції в точці.Властивості неперервних ф-цій.
- •38.Точки розриву, класифікація точок розриву.
- •39. Похідна ф-ції.Необхідна умова існування ф-ції.Геометричний та економічний зміст похідної.
- •41.Похідна складної функції
- •42.Параметричнезадання функції.Похідна від функції заданої параметрично
- •43.Похідні вищих порядків.
- •44.Диференціал функції. Застосування диференціала в наближених обчисленнях. Геометричний зміст диференціала і його властивості. Інваріантність.
- •45.Основні теореми диференціального числення. Теореми Ролля, Лагранжа, Коші.
- •46. Правило Лопіталя.
- •47.Зростання й спадання ф-ї. Необхідна і достатня умови зростання(спадання) ф-ї.
- •48.Екстремум ф-ї. Необхідна умова існування екстремуму. (Теорема Ферма).
- •49..Опуклість і угнутість графіка ф-ї. Необхідна і достатня ознаки опуклості графіка ф-ї.
- •50. Асимптоти кривої.
- •52.Найбільше і найменше значення ф-ції на відрізку.
- •53.Первісна і невизначений інтеграл.Основні означення та найпростіші властивості невизначеного інтеграла.Таблиця інтегралів.
- •54.Інтегрування ф-цій, що містять квадратний тричлена
- •55.Раціональні дроби(означення).Прості раціональні дроби та їх інтегрування.
- •57.Інтеграли від ірраціональних ф-цій
- •58. Інтегрування деяких класів тригонометричних функцій.
- •59.Визначений інтеграл, як границя інтегральної суми. Теорема існування. Геометричний зміст визначеного інтеграла.
- •61. Основні методи обчислення визначеного інтеграла( безпосереднє, частинами).
45.Основні теореми диференціального числення. Теореми Ролля, Лагранжа, Коші.
Теорема
Ролля.
Якщо
ф-я f(x)
неперервна на відрізку [а,в], диференційована
в усіх внутрішніх точках цього відрізка,
на кінцях відрізка обертається в нуль,
то всередині відрізка [а,в] існує точка
„с” така, що f/(c)=0.
a<=c<=b.Теорема
Лагранжа.
Якщо ф-я y=f(x)
неперервна на відрізку (а,в) і диференційована
в кожній точці цього відрізка, то
всередині відрізка (а,в) знайдеться така
точка „с” (принаймні одна) , що
f(b)-f(a)/b-a=f/(c).Теорема
Коші.
Якщо
функції y=f(x)
і y=g(x)
неперервні на відрізку (а,в), диференційовані
у всіх внутрішніх точках цього відрізку
, при чому g/(х)
не =0
в жодній точці цього відрізка, тоді
всередині відрізка (а,в) існує така точка
„с”, що f(b)-f(a)/g(b)-g(a)=f/(с)/g/(c).
А<c<b.
46. Правило Лопіталя.
Якщо ф-ї y=f(x) і y=g(x) на відрізку (а,в) задовольняють умовам теореми Коші і обертаються в нуль, при х=а, тобто f(a)=g(a)=0, тоді якщо існує границя limf/(х)/g/(х), то існує границя limf(x)/g(x), при чому limf(x)/g(x)=limf/(x)/g/(x).
47.Зростання й спадання ф-ї. Необхідна і достатня умови зростання(спадання) ф-ї.
Означення: ф-я називається зростаючою на інтервалі (а,в) якщо для любих х0 і х із цього інтервалу із умови х-х0>f(x)>F(x0).Тобто х-х0=∆х>0.f(x)-f(x0)=∆f(x)>0. Таким чином ф-я зростаюча, якщо приріст ф-ї і приріст аргументу одного знаку. Ф-я спадна, якщо приріст ф-ї і приріст аргументу різних знаків.
Теорема: якщо ф-я y=f(x) визначена на інтервалі (а,в) і має в кожній точці цього інтервалу похідні, то для зростаючих ф-й похідна невід”ємна, а для спадних ф-й похідна недодатня в кожній точці цього інтервалу. Достатня умова зростання(спадання) ф-ї: якщо ф-я y=f(x) визначена і диференційована в кожній точці відрізка (а,в), то якщо похідна (f/(х))>0, то ф-я f(x) зростає, якщо похідна f/(x)<0-ф-я спадає.
48.Екстремум ф-ї. Необхідна умова існування екстремуму. (Теорема Ферма).
Означення: точка х0 із області визначення y=f(x) називається точкою min(max) цієї ф-ї , якщо знайдеться дельта окіл в точці х0 , що для всіх х, що не співпадають із х0 з цього околу виконується рівність: f(x0)<f(x), [f(x0)>f(x)]. Точки Min(max) називаються точками екстремуму. А значення ф-ї в цих точках екстремумом ф-ї. Теорема Ферма: якщо ф-я y=f(x) диференційована в точці х0 і її околі, а точка х0 –є точкою екстремуму цієї ф-ї, то похідна в точці х0=0.Необхідна умова існування екстремумів в більш загальному вигляді формулюється так: якщо ф-я y=f(x) визначена в околі точки х0 за виключенням може самої точки х0, має в точці х0 екстремум, то похідна в цій точці дорівнює нулю або нескінченості. Означення: точки, в яких перша похідна =0, або не існує називаються стаціонарними або критичними точками першого роду. Необхідна умова існування похідної це:
f/(х)=0 або f/(х)=+-нескінченості.
49..Опуклість і угнутість графіка ф-ї. Необхідна і достатня ознаки опуклості графіка ф-ї.
Означення: графік ф-ї y=f(x) називається опуклим на інтервалі (а,в) якщо графік розташований нижче любої дотичної , проведеної до графіка ф-ї в точках інтервала (а,в).Означення: графік ф-ї y=f(x) називається угнутим на відрізку (а,в) якщо графік розташований вище любої дотичної , проведеної до графіка ф-ї в точках інтервала (а,в). Достатня умова опуклості графіка ф-ї: нехай ф-я y=f(x) визначена і двічі неперервно диференційована в точці „х” інтервала (а,в). Тоді, якщо у всіх точках „х” інтервала (а,в) друга похідна у//>0, то графік ф-ї буде угнутим(U). Якщо для любого „х”, що належить (а,в) у//<0, то графік ф-ї опуклий(∩).
Точки перегину. Необхідна і достатня умови існування точок перегину.
Означення. Точка, яка відділяє опуклу частину неперервної кривої від угнутої наз. т. перегину.
Необхідна умова існування т. перегину.
Якщо ф-ція y=f(x) має неперервні похідні до 2-го порядку включно на [а; b], а т. Р0 (хо ; f(хо )) є т. перегину графіка ф-ції, то f’’(хо )=0.
Доведення. Так як т. Р0 (хо ; f(хо )) є т. перегину графіка ф-ції, то зліва і справа від цієї т. y’’ має різні знаки, але за умовою теореми f’’(х) – неперервна ф-ція, тоді за властивістю неперервних ф-цій на відрізку f’’(хо )=0, хо є [а; b].
Достатня умова існування точок перегину.
Якщо ф-ція y=f(x) двічі неперервно-диференційована на [а; b] і при переході через т. хо є [а; b] f’’(х) змінює свій знак, то т. Р0 (хо ; f(хо )) є т. перегину графіка ф-ції.
x<хо , f’’(х)>0 - y=f(x) – опуклий
x> хо , f’’(х)<0, y=f(x) – угнутий
x< хо , f’’(х)<0, y=f(x) – угнутий
x> хо , f’’(х)>0, y=f(x) - опуклий
