- •Классическая линейная модель множественной регрессии (клммр). Оценивание неизвестных параметров: метод наименьших квадратов (мнк) и метод максимального правдоподобия (ммп).
- •2.Обобщенная линейная модель множественной регрессии (олммр) и обобщенный мнк.
- •3.Динамические эконометрические модели. Лаговые модели. Примеры лаговых моделей в экономике.
- •4.Прогнозирование экономических процессов с применением эконометрических моделей.
- •5.Производственные функции. Однородные и линейные производственные функции. Производственная функция Кобба-Дугласа.
- •6.Статические модели спроса на товары, эндогенные и экзогенные факторы. Эластичности спроса на товары по их ценам и по доходам.
- •7.Статистические модели потребления благ. Коэффициенты эластичности потребления по доходу.
- •8.Математические методы прогнозирования экономического роста, структуры экономики, цен, инфляции и финансов. Методы прогнозирования темпов экономического роста.
- •9.Математические методы в прогнозировании трудовых ресурсов и занятости населения, социального развития и потребительского рынка.
- •10.Понятия «модель» и «моделирование». Модель и оригинал. Экономико-математическое моделирование и его основные этапы. Классификация экономико-математических моделей и методов.
- •11.Критерий оптимальности решения экономической задачи. Оптимизационные модели в экономике. 12. Информационное и математическое обеспечение процесса моделирования.
- •13.Понятие «информация». Обобщенная схема обработки информации. Экономическая информация и ее свойства.
- •14 Энтропия системы и количество информации. Априорная и апостериорная информация.
- •Основные методы математического моделирования: аналитические, численные, имитационные, статистические.
- •Погрешности компьютерного математического моделирования, способы их оценки.
- •17. Математический аппарат нечеткой логики в моделировании экономических процессов
- •18. Пакеты прикладных программ: общего и специального назначения, методо-ориентированные и проблемно-ориентированные.
- •19. Понятие и классификация информационных технологий. Особенности современного этапа развития информационных технологий
- •20. Компьютерные сетевые технологии.
- •21. Роль и место информационных технологий в социально-экономических исследованиях, прогнозировании и управлении.
- •22. Понятие и виды электронного бизнеса. Модели электронного бизнеса.
- •23. Общая задача математического программирования. Задача линейного программирования. Прямая и двойственная задачи линейного программирования
- •24. Применение методов теории графов в сетевом планировании и управлении
- •25. Системы массового обслуживания, уравнения Эрланга
- •1)Показатели эффективности использования смо:
- •26. Методы расчета экономической эффективности использования новых моделей и информационных технологий.
- •27. Методы оценки эффективности инвестиционных проектов
- •28. Тенденции развития информационных технологий. Информационная инфраструктура экономических систем
- •29. Моделирование процессов принятия решений. Экспертное моделирование процедур принятия решений, построения баз знаний.
- •30. Системы поддержки принятия решений и их классификация.
- •31.Структура и функции автоматизированной системы формирования, планирования и принятия решений.
- •32.Реинжиниринг бизнес-процессов. Методология, средства и технологии реинжиниринга бизнес-процессов.
- •33.Моделирование бизнес-процессов. Программное обеспечение процесса моделирования.
- •34.Инструментальные методы поддержки принятия решений в проектах по реинжинирингу бизнес-процессов.
- •35.Информационные технологии в реинжиниринге бизнес-процессов.
- •36.Проблемы автоматизации управленческой деятельности.
- •37.Общая характеристика, классификация case-средств и их роль в совершенствовании экономических систем.
- •И спользование case-средств для совершенствования деятельности предприятий
- •38.Методы теории игр в экономике. Решение игры двух лиц с нулевой суммой в смешанных стратегиях.
- •39.Биматричные игры, игры с ненулевой суммой. Кооперативные игры и некооперативные игры с ненулевой суммой.
- •40. Временные ряды экономических показателей. Нестационарные и стационарные временные ряды. Методы обработки временных рядов.
- •41 Построение моделей временных рядов в соответствии с методологией Бокса-Дженкинса. Модели arima.
- •42 Статическая модель межотраслевого баланса (моБа). Экономическое содержание разделов таблицы моБа.
- •43 Отражение региональных связей при анализе функционирования экономических систем. Статическая модель межрегионального моБа. Динамические модели моБа.
- •44. Сущность методов многомерного статистического анализа. Центральные проблемы многомерного статистического моделирования.
- •45. Построение системы исходных данных экономических показателей в виде «объект-свойство».
- •46. Классификация объектов при наличии обучающих выборок. Постановка задачи классического дискриминантного анализа.
- •47. Основные типы задач кластер-анализа и основные типы кластер-процедур.
- •48. Основное содержание задачи снижения размерности исходной системы данных. Метод главных компонент.
- •49 Технологии искусственного интеллекта. Применение систем искусственного интеллекта в социально-экономическом прогнозировании.
- •50 Политика безопасности. Методы и средства защиты информации в информационных системах.
- •Обеспечения информационной безопасности
4.Прогнозирование экономических процессов с применением эконометрических моделей.
Эконометрика — прикладная экономическая дисциплина, изучающая конкретные количественные взаимосвязи экономических объектов и процессов с помощью математико-статистических методов и моделей. Главным инструментом эконометрического исследования является модель. Выделяют три основных класса эконометрических моделей:
1) модель временных рядов;
2) модели регрессии;
3) системы одновременных уравнений.
Наиболее простым и часто используемым видом эконометрических моделей выступает регрессионная модель. Методическое обеспечение регрессионной модели предполагает выявление набора потенциально возможных факторов, оказывающих влияние на динамику исследуемого показателя. Далее, в рамках информационного обеспечения, формируются ряды наблюдений, что предполагает сбор статистических данных по выделенному кругу показателей либо в пространстве, либо во времени. На этом этапе важным является обеспечение методологической сопоставимости данных в пределах ряда. Далее переходят непосредственно к моделированию, пробуя различные виды зависимостей, и на основании статистических характеристик полученных моделей выбирают наилучшую.
Множественная регрессия явл. обобщением парной регрессии и исп-ся для описания зависимости между зависимой переменой У и независимыми переменными Х1,Х2,…,Хk. Множественная регрессия м. б. лин. и нелин., но распространение в эк-ке получила линейная множественная регрессия.
Выбор. регрессия:
В качестве примеров моделей регрессии можно привести следующие модели:
а) производственная функция вида Q=f(L,K), выражающая зависимость объёма производства определённого товара (Q) от производственных факторов – от затрат капитала (К) и затрат труда (L);
б) функция цены Р=f(Q,Pk), характеризующая зависимость цены определённого товара (Р) от объема поставки (Q) и от цен конкурирующих товаров (Pk);
в) функция спроса Qd=f(P,Pk,I), характеризующая зависимость величины спроса на определённый товар (Р) от цены данного товара (Р), от цен товаров-конкурентов (Pk) и от реальных доходов потребителей (I).
Система одновременных уравнений — это система эконометрических уравнений, содержащая взаимозависимые переменные, которые включены в одно из уравнений модели в качестве результативного признака, а в другие уравнения - в качестве факторного признака. Пример: Кейнсианская модель потребления:
Модель описывает закрытую экономику без государственного вмешательства.
Из модели можно найти значение Yt для любого момента времени.
Примером системы одновременных уравнений является модель спроса и предложения, в которую входит три уравнения:
а) уравнение предложения: =а0+а1*Рt+a2*Pt-1;
б) уравнение спроса: =b0+b1* Рt+b2*It;
в) тождество равновесия: QSt = Qdt,
где QSt – предложение товара в момент времени t;
Qdt – спрос на товар в момент времени t;
Рt – цена товара в момент времени t;
Pt-1 – цена товара в предшествующий момент времени (t-1);
It– доход потребителей в момент времени.
В модели спроса и предложения выражаются две результативные переменные:
а) Qt– объём спроса, равный объёму предложения в момент времени t;
б) Pt– цена товара в момент времени t.
Моделью временных рядов называется зависимость результативной переменной от переменной времени или переменных, относящихся к другим моментам времени.
К моделям временных рядов, характеризующих зависимость результативной переменной от времени, относятся:
а) модель зависимости результативной переменной от трендовой компоненты или модель тренда;
б) модель зависимости результативной переменной от сезонной компоненты или модель сезонности;
в) модель зависимости результативной переменной от трендовой и сезонной компонент или модель тренда и сезонности.
Если временной ряд представлен суммой компонент – аддитивная модель (Yt=Tt+St+et); если в виде произведения компонент – мультипликативная модель (Yt=Tt*St*et); модель смешанного типа (Yt=Tt*St+et)
К моделям временных рядов, характеризующих зависимость результативной переменной от переменных, датированных другими моментами времени, относятся:
а) модели с распределённым лагом, объясняющие вариацию результативной переменной в зависимости от предыдущих значений факторных переменных;
б) модели авторегрессии, объясняющие вариацию результативной переменной в зависимости от предыдущих значений результативных переменных;
в) модели ожидания, объясняющие вариацию результативной переменной в зависимости от будущих значений факторных или результативных переменных.
Авторегрессионная модель р-го порядка (AR-модель) имеет вид:
yt = β0+β1yt-1 + β2yt-2 + … + βpyt-p + εt (t = 1, 2, …,n) , где β0, β1,…, βр – некоторые константы.
Она описывает изучаемый процесс в момент t в зависимости от его значений в предыдущие моменты t-1, t-2, …, t-p. Если исследуемый процесс yt в момент t определяется его значениями только в предшествующий период, то рассматривают авторегрессионную модель1-го порядка (AR(1)) или марковский случайный процесс :
yt = β0+β1yt-1 + εt (t = 1, 2, …,n) . (3)
Наряду с авторегрессионными временных рядов в эконометрике рассматриваются также модели скользящей средней (не следует путать с аналогичным термином, используемым в технике сглаживания временных рядов), в которой моделируемая величина задается линейной функцией от возмущений (ошибок) в предыдущие моменты времени. Модель скользящей средней q-го порядка (МА-модель) имеет вид:
yt = εt + γ1 εt-1 + γ2 εt-2 + … + γq εt-q .
В эконометрике используются также комбинированные модели временных рядов. Авторегрессионная модель скользящей средней (ARMA) имеет вид:
yt = β0+β1yt-1 + β2yt-2 + … + βpyt-p + εt + γ1 εt-1 + γ2 εt-2 + … + γq εt-q .
