- •Классическая линейная модель множественной регрессии (клммр). Оценивание неизвестных параметров: метод наименьших квадратов (мнк) и метод максимального правдоподобия (ммп).
- •2.Обобщенная линейная модель множественной регрессии (олммр) и обобщенный мнк.
- •3.Динамические эконометрические модели. Лаговые модели. Примеры лаговых моделей в экономике.
- •4.Прогнозирование экономических процессов с применением эконометрических моделей.
- •5.Производственные функции. Однородные и линейные производственные функции. Производственная функция Кобба-Дугласа.
- •6.Статические модели спроса на товары, эндогенные и экзогенные факторы. Эластичности спроса на товары по их ценам и по доходам.
- •7.Статистические модели потребления благ. Коэффициенты эластичности потребления по доходу.
- •8.Математические методы прогнозирования экономического роста, структуры экономики, цен, инфляции и финансов. Методы прогнозирования темпов экономического роста.
- •9.Математические методы в прогнозировании трудовых ресурсов и занятости населения, социального развития и потребительского рынка.
- •10.Понятия «модель» и «моделирование». Модель и оригинал. Экономико-математическое моделирование и его основные этапы. Классификация экономико-математических моделей и методов.
- •11.Критерий оптимальности решения экономической задачи. Оптимизационные модели в экономике. 12. Информационное и математическое обеспечение процесса моделирования.
- •13.Понятие «информация». Обобщенная схема обработки информации. Экономическая информация и ее свойства.
- •14 Энтропия системы и количество информации. Априорная и апостериорная информация.
- •Основные методы математического моделирования: аналитические, численные, имитационные, статистические.
- •Погрешности компьютерного математического моделирования, способы их оценки.
- •17. Математический аппарат нечеткой логики в моделировании экономических процессов
- •18. Пакеты прикладных программ: общего и специального назначения, методо-ориентированные и проблемно-ориентированные.
- •19. Понятие и классификация информационных технологий. Особенности современного этапа развития информационных технологий
- •20. Компьютерные сетевые технологии.
- •21. Роль и место информационных технологий в социально-экономических исследованиях, прогнозировании и управлении.
- •22. Понятие и виды электронного бизнеса. Модели электронного бизнеса.
- •23. Общая задача математического программирования. Задача линейного программирования. Прямая и двойственная задачи линейного программирования
- •24. Применение методов теории графов в сетевом планировании и управлении
- •25. Системы массового обслуживания, уравнения Эрланга
- •1)Показатели эффективности использования смо:
- •26. Методы расчета экономической эффективности использования новых моделей и информационных технологий.
- •27. Методы оценки эффективности инвестиционных проектов
- •28. Тенденции развития информационных технологий. Информационная инфраструктура экономических систем
- •29. Моделирование процессов принятия решений. Экспертное моделирование процедур принятия решений, построения баз знаний.
- •30. Системы поддержки принятия решений и их классификация.
- •31.Структура и функции автоматизированной системы формирования, планирования и принятия решений.
- •32.Реинжиниринг бизнес-процессов. Методология, средства и технологии реинжиниринга бизнес-процессов.
- •33.Моделирование бизнес-процессов. Программное обеспечение процесса моделирования.
- •34.Инструментальные методы поддержки принятия решений в проектах по реинжинирингу бизнес-процессов.
- •35.Информационные технологии в реинжиниринге бизнес-процессов.
- •36.Проблемы автоматизации управленческой деятельности.
- •37.Общая характеристика, классификация case-средств и их роль в совершенствовании экономических систем.
- •И спользование case-средств для совершенствования деятельности предприятий
- •38.Методы теории игр в экономике. Решение игры двух лиц с нулевой суммой в смешанных стратегиях.
- •39.Биматричные игры, игры с ненулевой суммой. Кооперативные игры и некооперативные игры с ненулевой суммой.
- •40. Временные ряды экономических показателей. Нестационарные и стационарные временные ряды. Методы обработки временных рядов.
- •41 Построение моделей временных рядов в соответствии с методологией Бокса-Дженкинса. Модели arima.
- •42 Статическая модель межотраслевого баланса (моБа). Экономическое содержание разделов таблицы моБа.
- •43 Отражение региональных связей при анализе функционирования экономических систем. Статическая модель межрегионального моБа. Динамические модели моБа.
- •44. Сущность методов многомерного статистического анализа. Центральные проблемы многомерного статистического моделирования.
- •45. Построение системы исходных данных экономических показателей в виде «объект-свойство».
- •46. Классификация объектов при наличии обучающих выборок. Постановка задачи классического дискриминантного анализа.
- •47. Основные типы задач кластер-анализа и основные типы кластер-процедур.
- •48. Основное содержание задачи снижения размерности исходной системы данных. Метод главных компонент.
- •49 Технологии искусственного интеллекта. Применение систем искусственного интеллекта в социально-экономическом прогнозировании.
- •50 Политика безопасности. Методы и средства защиты информации в информационных системах.
- •Обеспечения информационной безопасности
3.Динамические эконометрические модели. Лаговые модели. Примеры лаговых моделей в экономике.
Модель является динамической, если в данный момент времени t она учитывает значения входящих в нее переменных, относящихся как к текущему, так к предыдущим моментам времени, т.е. если эта модель отражает динамику исследуемых переменных в каждый момент времени.
Можно выделить два основных типа динамических эконометрических моделей:
1. модели авторегрессии и модели с распределенным лагом, в которых значения переменной за прошлые периоды времени (лаговые переменные) непосредственно включены в модель.
2. модели второго типа учитывают динамическую информацию в неявном виде. В них включены переменные, характеризующие ожидаемый или желаемый уровень результата, или одного из факторов в момент времени t. Этот уровень считается неизвестным и определяется экономическими единицами с учетом информации, которой они располагают в момент (t-1).
В зависимости от способа определения ожидаемых значений показателей различают модели неполной корректировки, адаптивных ожиданий и рациональных ожиданий. Оценка параметров этих моделей сводится к оценке параметров моделей авторегрессии.
При
исследовании экономических процессов
нередко приходится моделировать
ситуации, когда значение результативного
признака в текущий момент времени t
формируется под воздействием факторов,
действовавших в прошлые моменты
времени
Например,
на выручку от реализации или прибыль
компании текущего периода могут оказывать
влияние расходы на рекламу или проведение
маркетинговых исследований, сделанные
компанией в предшествующие моменты
времени. Величину
,
характеризующую запаздывание в
воздействии фактора на результат,
называют в эконометрике лагом,
а временные ряды самих факторных
переменных, сдвинутые на один или более
моментов времени, —лаговыми
переменными.
Модели
с распределенным лагом –
это модели, содержащие не только текущие,
но и лаговые значения факторных переменных
Xt. Пример
модели:
Например,
разработка экономической политики как
на макро-, так и на микроуровне трубет
решения задач, определяющих, какое
воздействие окажут значения управляемых
переменных текущего периодна на будущие
значения экономических показателей.
Например, как повлияют инвестиции в
промышленность на валовую добавленную
стоимость этой отрасли экономики
будущих периодов или как может изменить
объем ВВП, произведенного в периоде
(t+1), под воздействием увеличения денежной
массы в периоде t?
.
Наряду с лаговыми значениями переменных
Xt на величину зависимой переменной Yt
текущего периода могут оказывать влияние
значения результативного признака в
прошлые моменты или периоды времени.
Например, потребление в момент
времени t формируется
под воздействием дохода текущего и
предыдущего периодов, а также объема
потребления прошлых периодов, например
потребления в период (t-1).
Модели, в которых учитываются процессы,
происходящие с результативной переменной
в прошлые периоды, называют моделями
авторегрессии. Пример
модели:
Построение моделей с распределнным лагом и моделей авторегрессии имеет свою специфику:
1. обычный МНК к оценке параметров этих моделей применить нельзя ввиду нарушения его предпосылок, т.е. требуются специальные статистические методы.
2.требуется решать проблему выбора оп-тимальной величины лага и определять его стрру.
3.модели с распределенным лагом и модели авторегрессии могут быть взаимосвязаны, что требует в некоторых случаях перехода от одной модели к другой.
