- •Классическая линейная модель множественной регрессии (клммр). Оценивание неизвестных параметров: метод наименьших квадратов (мнк) и метод максимального правдоподобия (ммп).
- •2.Обобщенная линейная модель множественной регрессии (олммр) и обобщенный мнк.
- •3.Динамические эконометрические модели. Лаговые модели. Примеры лаговых моделей в экономике.
- •4.Прогнозирование экономических процессов с применением эконометрических моделей.
- •5.Производственные функции. Однородные и линейные производственные функции. Производственная функция Кобба-Дугласа.
- •6.Статические модели спроса на товары, эндогенные и экзогенные факторы. Эластичности спроса на товары по их ценам и по доходам.
- •7.Статистические модели потребления благ. Коэффициенты эластичности потребления по доходу.
- •8.Математические методы прогнозирования экономического роста, структуры экономики, цен, инфляции и финансов. Методы прогнозирования темпов экономического роста.
- •9.Математические методы в прогнозировании трудовых ресурсов и занятости населения, социального развития и потребительского рынка.
- •10.Понятия «модель» и «моделирование». Модель и оригинал. Экономико-математическое моделирование и его основные этапы. Классификация экономико-математических моделей и методов.
- •11.Критерий оптимальности решения экономической задачи. Оптимизационные модели в экономике. 12. Информационное и математическое обеспечение процесса моделирования.
- •13.Понятие «информация». Обобщенная схема обработки информации. Экономическая информация и ее свойства.
- •14 Энтропия системы и количество информации. Априорная и апостериорная информация.
- •Основные методы математического моделирования: аналитические, численные, имитационные, статистические.
- •Погрешности компьютерного математического моделирования, способы их оценки.
- •17. Математический аппарат нечеткой логики в моделировании экономических процессов
- •18. Пакеты прикладных программ: общего и специального назначения, методо-ориентированные и проблемно-ориентированные.
- •19. Понятие и классификация информационных технологий. Особенности современного этапа развития информационных технологий
- •20. Компьютерные сетевые технологии.
- •21. Роль и место информационных технологий в социально-экономических исследованиях, прогнозировании и управлении.
- •22. Понятие и виды электронного бизнеса. Модели электронного бизнеса.
- •23. Общая задача математического программирования. Задача линейного программирования. Прямая и двойственная задачи линейного программирования
- •24. Применение методов теории графов в сетевом планировании и управлении
- •25. Системы массового обслуживания, уравнения Эрланга
- •1)Показатели эффективности использования смо:
- •26. Методы расчета экономической эффективности использования новых моделей и информационных технологий.
- •27. Методы оценки эффективности инвестиционных проектов
- •28. Тенденции развития информационных технологий. Информационная инфраструктура экономических систем
- •29. Моделирование процессов принятия решений. Экспертное моделирование процедур принятия решений, построения баз знаний.
- •30. Системы поддержки принятия решений и их классификация.
- •31.Структура и функции автоматизированной системы формирования, планирования и принятия решений.
- •32.Реинжиниринг бизнес-процессов. Методология, средства и технологии реинжиниринга бизнес-процессов.
- •33.Моделирование бизнес-процессов. Программное обеспечение процесса моделирования.
- •34.Инструментальные методы поддержки принятия решений в проектах по реинжинирингу бизнес-процессов.
- •35.Информационные технологии в реинжиниринге бизнес-процессов.
- •36.Проблемы автоматизации управленческой деятельности.
- •37.Общая характеристика, классификация case-средств и их роль в совершенствовании экономических систем.
- •И спользование case-средств для совершенствования деятельности предприятий
- •38.Методы теории игр в экономике. Решение игры двух лиц с нулевой суммой в смешанных стратегиях.
- •39.Биматричные игры, игры с ненулевой суммой. Кооперативные игры и некооперативные игры с ненулевой суммой.
- •40. Временные ряды экономических показателей. Нестационарные и стационарные временные ряды. Методы обработки временных рядов.
- •41 Построение моделей временных рядов в соответствии с методологией Бокса-Дженкинса. Модели arima.
- •42 Статическая модель межотраслевого баланса (моБа). Экономическое содержание разделов таблицы моБа.
- •43 Отражение региональных связей при анализе функционирования экономических систем. Статическая модель межрегионального моБа. Динамические модели моБа.
- •44. Сущность методов многомерного статистического анализа. Центральные проблемы многомерного статистического моделирования.
- •45. Построение системы исходных данных экономических показателей в виде «объект-свойство».
- •46. Классификация объектов при наличии обучающих выборок. Постановка задачи классического дискриминантного анализа.
- •47. Основные типы задач кластер-анализа и основные типы кластер-процедур.
- •48. Основное содержание задачи снижения размерности исходной системы данных. Метод главных компонент.
- •49 Технологии искусственного интеллекта. Применение систем искусственного интеллекта в социально-экономическом прогнозировании.
- •50 Политика безопасности. Методы и средства защиты информации в информационных системах.
- •Обеспечения информационной безопасности
Погрешности компьютерного математического моделирования, способы их оценки.
При численном решении математических и прикладных задач почти неизбежно появление на том или ином этапе их решения погрешностей следующих трех типов:
1) Погрешность задачи. Она связана с приближенным характером исходной содержательной модели (в частности, с невозможностью учесть все факторы в процессе изучений моделируемого явления), а также ее математического описания, параметрами которого служат обычно приближенные числа (например, из-за принципиальной невозможности выполнения абсолютно точных измерений). Для вычислителя погрешность задачи следует считать неустранимой (безусловной), хотя постановщик задачи иногда может ее изменить.
2) Погрешность метода. Это погрешность, связанная со способом решения поставленной математической задачи и появляющаяся в результате подмены исходной математической модели другой или конечной последовательностью других, например, линейных моделей. При создании численных методов закладывается возможность отслеживания таких погрешностей и доведения их до сколь угодно малого уровня. Отсюда естественно отношение к погрешности метода как к устранимой (или условной).
3) Погрешность округлений (погрешность действий). Этот тип погрешностей обусловлен необходимостью выполнять арифметические операции над числами, усеченными до количества разрядов, зависящего от применяемой вычислительной техники и используемого типа данных (если, разумеется, не применяются специальные программные средства, реализующие, например, арифметику рациональных чисел).
Все три описанных типа погрешностей в сумме дают полную погрешность результата решения задачи.
Рассмотрим некоторые возможные подходы к учету погрешностей действий.
Пусть А и а — два «близких» числа; условимся считать А точным, а приближенным.
Величина
а:=|
А-а| называется
абсолютной
погрешнотью
приближенного
числа а,
а
— его относительной
погрешностью.
Числа
а
и а,
такие,
что
и
называются
оценками
или
границами
абсолютной
и относительной погрешностей соответственно
(к а
и а
часто применяют также термин «предельные
погрешности»). Так
как обычно истинные погрешности
неизвестны, то там, где не может возникнуть
недоразумений, будем иногда называть
а
и а
просто
абсолютной и относительной погрешностями.
Поставим
вопрос о грубом оценивании погрешности
результата при вычислении значения
дифференцируемой функции u
= f(x1,x2,
,
xп)
приближенных
аргументов x1,x2,
,
xп
если известны границы их абсолютных
погрешностей соответственно. В этом
случае точные значения аргументов
лежат
соответственно на отрезках [
],
[
],
,
[
].
точная
абсолютная погрешность результата u
=
f(x1,x2,
,
xп)
есть
— модуль полного приращения функции.
Главной, т.е. линейной частью этого приращения, является, как известно, полный дифференциал du. Таким образом, имеем:
значит за границу абсолютной погрешности результата приближенно может быть принята величина
(1.1)
Отсюда легко получается формула приближенной оценки относительной погрешности значения u,
При
больших количествах однотипных вычислений
вступают в силу уже вероятностные,
или
статистические,
законы формирования
погрешностей результатов действий.
Например, методами теории вероятностей
показывается, что математическое
ожидание абсолютной погрешности суммы
п
слагаемых
с одинаковым уровнем абсолютных
погрешностей, при достаточно большом
n,
пропорционально
.
В частности, если n>10
и все слагаемые округлены до m-го
десятичного разряда, то для подсчета
абсолютной погрешности суммы S
применяют
правило
Чеботарева:
