- •Классическая линейная модель множественной регрессии (клммр). Оценивание неизвестных параметров: метод наименьших квадратов (мнк) и метод максимального правдоподобия (ммп).
- •2.Обобщенная линейная модель множественной регрессии (олммр) и обобщенный мнк.
- •3.Динамические эконометрические модели. Лаговые модели. Примеры лаговых моделей в экономике.
- •4.Прогнозирование экономических процессов с применением эконометрических моделей.
- •5.Производственные функции. Однородные и линейные производственные функции. Производственная функция Кобба-Дугласа.
- •6.Статические модели спроса на товары, эндогенные и экзогенные факторы. Эластичности спроса на товары по их ценам и по доходам.
- •7.Статистические модели потребления благ. Коэффициенты эластичности потребления по доходу.
- •8.Математические методы прогнозирования экономического роста, структуры экономики, цен, инфляции и финансов. Методы прогнозирования темпов экономического роста.
- •9.Математические методы в прогнозировании трудовых ресурсов и занятости населения, социального развития и потребительского рынка.
- •10.Понятия «модель» и «моделирование». Модель и оригинал. Экономико-математическое моделирование и его основные этапы. Классификация экономико-математических моделей и методов.
- •11.Критерий оптимальности решения экономической задачи. Оптимизационные модели в экономике. 12. Информационное и математическое обеспечение процесса моделирования.
- •13.Понятие «информация». Обобщенная схема обработки информации. Экономическая информация и ее свойства.
- •14 Энтропия системы и количество информации. Априорная и апостериорная информация.
- •Основные методы математического моделирования: аналитические, численные, имитационные, статистические.
- •Погрешности компьютерного математического моделирования, способы их оценки.
- •17. Математический аппарат нечеткой логики в моделировании экономических процессов
- •18. Пакеты прикладных программ: общего и специального назначения, методо-ориентированные и проблемно-ориентированные.
- •19. Понятие и классификация информационных технологий. Особенности современного этапа развития информационных технологий
- •20. Компьютерные сетевые технологии.
- •21. Роль и место информационных технологий в социально-экономических исследованиях, прогнозировании и управлении.
- •22. Понятие и виды электронного бизнеса. Модели электронного бизнеса.
- •23. Общая задача математического программирования. Задача линейного программирования. Прямая и двойственная задачи линейного программирования
- •24. Применение методов теории графов в сетевом планировании и управлении
- •25. Системы массового обслуживания, уравнения Эрланга
- •1)Показатели эффективности использования смо:
- •26. Методы расчета экономической эффективности использования новых моделей и информационных технологий.
- •27. Методы оценки эффективности инвестиционных проектов
- •28. Тенденции развития информационных технологий. Информационная инфраструктура экономических систем
- •29. Моделирование процессов принятия решений. Экспертное моделирование процедур принятия решений, построения баз знаний.
- •30. Системы поддержки принятия решений и их классификация.
- •31.Структура и функции автоматизированной системы формирования, планирования и принятия решений.
- •32.Реинжиниринг бизнес-процессов. Методология, средства и технологии реинжиниринга бизнес-процессов.
- •33.Моделирование бизнес-процессов. Программное обеспечение процесса моделирования.
- •34.Инструментальные методы поддержки принятия решений в проектах по реинжинирингу бизнес-процессов.
- •35.Информационные технологии в реинжиниринге бизнес-процессов.
- •36.Проблемы автоматизации управленческой деятельности.
- •37.Общая характеристика, классификация case-средств и их роль в совершенствовании экономических систем.
- •И спользование case-средств для совершенствования деятельности предприятий
- •38.Методы теории игр в экономике. Решение игры двух лиц с нулевой суммой в смешанных стратегиях.
- •39.Биматричные игры, игры с ненулевой суммой. Кооперативные игры и некооперативные игры с ненулевой суммой.
- •40. Временные ряды экономических показателей. Нестационарные и стационарные временные ряды. Методы обработки временных рядов.
- •41 Построение моделей временных рядов в соответствии с методологией Бокса-Дженкинса. Модели arima.
- •42 Статическая модель межотраслевого баланса (моБа). Экономическое содержание разделов таблицы моБа.
- •43 Отражение региональных связей при анализе функционирования экономических систем. Статическая модель межрегионального моБа. Динамические модели моБа.
- •44. Сущность методов многомерного статистического анализа. Центральные проблемы многомерного статистического моделирования.
- •45. Построение системы исходных данных экономических показателей в виде «объект-свойство».
- •46. Классификация объектов при наличии обучающих выборок. Постановка задачи классического дискриминантного анализа.
- •47. Основные типы задач кластер-анализа и основные типы кластер-процедур.
- •48. Основное содержание задачи снижения размерности исходной системы данных. Метод главных компонент.
- •49 Технологии искусственного интеллекта. Применение систем искусственного интеллекта в социально-экономическом прогнозировании.
- •50 Политика безопасности. Методы и средства защиты информации в информационных системах.
- •Обеспечения информационной безопасности
Классическая линейная модель множественной регрессии (клммр). Оценивание неизвестных параметров: метод наименьших квадратов (мнк) и метод максимального правдоподобия (ммп).
Экономические явления, как правило, определяются большим числом одновременно и совокупно действующих факторов. Множественная регрессия применяется для исследования зависимости среднего значения анализируемых зависимых переменных от ряда независимых переменных или факторов.
Обозначим t-е наблюдение зависимой переменной Yt, а объясняющие переменные – xt1, xt2, …, xtp. Тогда модель множественной линейной регрессии можно представить в виде: Yt=1*q1(xt1)+ 2*q2(xt2)+…+ k*qk(xtk)+…+ p*qp(xtp)+ εt
Yt-эндогенная переменная
k (k=1,…p – число параметров) – параметр модели
Xtp (t=1,…,n – число наблюдений) – значение фактора Xp в наблюдении t (экзогенная переменная)
εt – случайная ошибка наблюдения.
qp( ) – некоторые детерминированные функции
Все параметры - неизвестны и подлежат оцениванию.
Модель является линейной по параметрам и м.б. нелинейной по переменным
Рассмотрим следующую модель:
Yt=1*xt1+ 2*xt2+…+ k*xtk+…+ p*xtp+ εt
Для аналитического исследования введём обозначения:
Модель м.б. представлена в виде: y=X+ε
Причины существования ε:
1. невозможно учесть все факторы (объясняющие переменные)
2. агрегирование переменных (объединение в одной переменной несколько)
3. ошибки измерения
4. ошибки выборки (неоднородность данных)
5. ошибки спецификации (вид зависимости)
Выбор формы зависимости между экзо- и эндогенными переменными имеет 3 способа
1. графический
2. аналитический
3. экспериментально
Основные гипотезы, лежащие в основе модели:
1. y=+ε – спецификация (линейная) уравнения регрессии
2. - матрица Х, детерминированная матрица max-го ранга k ( rang(X)=k ), k<n. Все столбцы матрицы линейно-независимы.
3. а) Е(ε)=0; т.е. Е( )-мат. ожидание
V(ε)=E(ε’ ε)= σ2In V( )-дисперсия In-единичная матрица
б) Cov(εt, εs)=0 Cov( )- ковариация. Отсутствие системной связи м-ду ошибками в разных наблюдениях. Если это условие не выполняется, то говорят об автокорреляции.
с) случайные ошибки д. иметь нормальное распределение с нулевым средним и постоянной дисперсией. εN(0; σ2In)
Множественная регрессия явл. обобщением парной регрессии и исп-ся для описания зависимости между зависимой переменой У и независимыми переменными Х1,Х2,…,Хk. Множественная регрессия м. б. лин. и нелин., но распространение в эк-ке получила линейная множественная регрессия.
Выбор.
регрессия:
Как и в парной регрессии случ-й член ε должен удовл-ть осн-м предположениям регресс-го анализа. Тогда с помощью МНК получ наилучшие оценки параметров теоретической регрессии. Кроме того переменные Х1,Х2,…,Хk должны быть некоррелированы (линейно независимы) друг с другом. Для записи формул для оценки коэффициентов регрессии, полученные на основе МНК, введем следующие обозначения:
Тогда
можно записать в векторно-матричной
форме теоретическую модель:
и
выборочную регрессию
.
МНК приводит к формуле для оценки
вектора α коэффициентов выборочной
регрессии:
Для
оценки коэффициентов множественной
линейной регрессии с двумя независимыми
переменными
,
можно решить систему уравнений:
