- •Предисловие
- •Лист студента
- •Лист рецензии
- •Раздел 1. Теория вероятностей
- •Тема 1.1. События и вероятность
- •1.1.1. Элементы комбинаторики
- •1.1.2. События
- •1.1.3. Понятие вероятности
- •1. Статистическое определение вероятности.
- •2. Классическое определение вероятности.
- •1.1.4. Алгебра событий
- •1.1.5. Теорема сложения
- •1.1.6. Условные вероятности и теорема умножения
- •1.1.7. Формула полной вероятности. Формулы Байеса
- •Тема 1.2. Повторение испытаний (схема Бернулли)
- •1.2.1. Формула Бернулли
- •1.2.2. Формула Пуассона
- •1.2.3. Локальная формула Лапласа
- •1.2.4. Интегральная формула Лапласа
- •Тема 1.3. Случайные величины
- •1.3.1. Дискретные случайные величины
- •1.3.2. Непрерывные случайные величины
- •Тема 1.4. Законы распределения случайных величин
- •1.4.1. Биномиальное распределение
- •1.4.2. Геометрическое распределение
- •1.4.3. Распределение Пуассона
- •1.4.4. Равномерное распределение
- •1.4.5. Показательное (экспоненциальное) распределение
- •1.4.6. Нормальное распределение
- •Тема 1.5. Система двух случайных величин
- •1.5.1. Дискретные двумерные случайные величины
- •1.5.2. Функция распределения двумерной случайной величины
- •Основные свойства функции распределения:
- •1.5.3. Непрерывные двумерные случайные величины
- •Свойства плотности распределения:
- •1.5.4. Независимые и зависимые случайные величины. Коэффициент корреляции
- •Свойства коэффициента корреляции
- •Тема 1.6. Закон больших чисел
- •1.6.1. Неравенства Маркова и Чебышева
- •1.6.2. Закон больших чисел
- •Теорема Чебышева
- •Закон больших чисел
- •1.6.3. Теорема Бернулли
- •Теорема Бернулли
- •1.6.4. Понятие о центральной предельной теореме
- •Центральная предельная теорема
- •Тема 1.7. Цепи Маркова
- •1.7.1. Понятие марковского случайного процесса
- •1.7.2. Цепи Маркова с дискретным временем
- •1.7.3. Цепи Маркова с непрерывным временем
- •Правила составления системы дифференциальных уравнений Колмогорова
- •Раздел 2. Математическая статистика
- •Тема 2.1. Вариационные ряды и их характеристики
- •2.1.1. Генеральная и выборочная совокупности
- •2.1.2. Вариационный ряд и его графические изображения
- •2.1.3. Числовые характеристики вариационных рядов
- •Тема 2.2. Оценка параметров генеральной совокупности
- •2.2.1. Точечные оценки параметров
- •2.2.2. Основные законы распределения статистических оценок
- •2.2.2.1. Распределение «хи-квадрат»
- •2.2.2.2. Распределение Стьюдента
- •2.2.2.3. Распределение Фишера-Снедекора
- •2.2.3. Интервальные оценки параметров
- •Тема 2.3. Проверка статистических гипотез
- •2.3.1. Основные понятия и определения
- •2.3.2. Проверка гипотезы о равенстве средних значений
- •2.3.3. Проверка гипотезы о равенстве генеральных дисперсий
- •2.3.4. Проверка гипотезы о распределении генеральной совокупности. Критерии согласия
- •Тема 2.4. Однофакторный дисперсионный анализ
- •2.4.1. Понятие о дисперсионном анализе
- •2.4.2. Факторная и остаточная дисперсии и их отыскание
- •2.4.3. Сравнение нескольких средних методом дисперсионного анализа
- •Тема 2.5. Корреляционно-регрессионный анализ
- •2.5.1. Формы представления исходных для анализа данных
- •2.5.2. Выборочный коэффициент корреляции
- •Свойства выборочного коэффициента корреляции
- •2.5.3. Выборочное корреляционное отношение
- •2.5.4. Линейная регрессия
- •2.5.5. Статистический анализ уравнения регрессии
- •Литература
ИНСТИТУТ
МЕЖДУНАРОДНЫХ ЭКОНОМИЧЕСКИХ СВЯЗЕЙ
ТЕОРЕТИКО – ПРАКТИЧЕСКИЙ КУРС
«ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА ДЛЯ ЭКОНОМИСТОВ»
Учебное пособие по курсу
«Теория вероятностей и математическая статистика»
Москва
2014
Рекомендовано к изданию
Решением Ученого совета ИМЭС
(Протокол № 4 от 27 ноября 2014 г.)
Настоящее учебное пособие разработал кандидат физико-математических наук, доцент, заведующий кафедрой математики и информатики ИМЭС Налимов Валерий Николаевич.
Предисловие
Настоящее учебное пособие предназначено для студентов второго курса заочной формы обучения и по тематическому объему полностью соответствует требованиям рабочей программы учебной дисциплины «Теория вероятностей и математическая статистика», которая, в свою очередь, полностью соответствует требованиям действующего федерального государственного образовательного стандарта по направлению 38.03.01 «Экономика».
Порядок изложения разделов, тем и основных подразделов тем в данном учебном пособии соответствует порядку, принятому в рабочей программе учебной дисциплины «Теория вероятностей и математическая статистика». Однако нумерация тем и подразделов в настоящем пособии может отличаться от нумерации, принятой в учебном пособии [1].
По каждой теме и подразделу темы данное пособие содержит теоретический материал, изложенный в предельно сжатой форме (теоремы и аксиомы, математические факты, формулы и их следствия, имеющие практическую значимость), а также примеры использования этого материала для решения задач. В конце изложения теоретического материала каждой темы приведены вопросы для самопроверки знаний по этой теме курса. Некоторые темы курса заканчиваются вопросами в форме тестов.
После ознакомления с теоретическим материалом студенту следует кратко и четко ответить на вопросы, самостоятельно оценив и отобрав материал, изложенный в литературе, ссылки на которую приведены в конце каждой темы, или подраздела, а полный список литературы приводится в конце пособия. Ваши ответы должны быть размещены непосредственно в Вашем экземпляре пособия. Причем при тестовом варианте ответов на вопросы Вы должны поставить любой значок (крестик, галочку и т.п.) только в одном квадрате, соответствующем верному, на Ваш взгляд, ответу на поставленный вопрос.
Настоящее пособие может быть полезно студентам второго курса заочного отделения, обучающимся по направлению 38.03.02 «Менеджмент», при подготовке к экзамену по курсу «Теория статистики», а также студентам второго курса очного (дневного) и очно-заочного отделений ИМЭС, при подготовке к сдаче экзаменов по дисциплинам «Теория вероятностей и математическая статистика» и «Теория статистики».
Лист студента
Фамилия ___________________________________
Имя ________________________________________
Отчество ____________________________________
Факультет ___________________________________
Курс _________________________________________
Группа _______________________________________
Дата начала работы: «_____» _____________ 20___ г.
Дата окончания работы «_____» ______________ 20___ г.
Личная подпись _________________________
Лист рецензии
Рецензент ______________________
______________________
«_____» _______________ 20____ г.
