- •Издано при участии уп “Белэнергосбережение
- •Энергетический менеджмент как часть общего менеджмента
- •Оптимального использования энергии:
- •История энергоиспользования и энергосбережения
- •Глобальная задача управления энергетикой
- •Глава 2.
- •Основные понятия и определения
- •Энергетический кризис:
- •3. Структура мирового потребления топливно-энергетических ресурсов (тэр)
- •Динамика потребления энергии
- •Основные энергоэкономические показатели
- •Энергопотребление на душу населения:
- •Энергоемкость экономики - отношение суммарного потребления энергии к объему валового внутреннего продукта:
- •Разработки стратегии производства и торговли энергоносителями;
- •Разработки и реализации политики энергоэффективности и энергосбережения во всех отраслях экономики на долго- и краткосрочный периоды.
- •4. Краткая характеристика энергетического сектора экономики республики беларусь
- •5. Структура и функции энергетического менеджмента
- •V V предприятие
- •1. Сберегать энергию и добиваться энергоэффективности следует на всех стадиях технологического процесса энергоснабжения.
- •Глава 4.
- •Виды энергии. Качество энергии
- •2. Преобразование энергии тепловой в механическую
- •3. Виды электростанций.
- •Газотурбинные и парогазовые установки
- •К тепловая энергия газов электрическая Энергия инетическая энергия вращения ротора турбины
- •4. 5. Графики нагрузки
- •Оптимизация структуры генерирующих мощностей, т.Е. Рациональный выбор числа, видов, установленной мощности электрических станций;
- •Разработка и использование системы социально-экономических мероприятий, стимулирующих потребителя к уменьшению потребления в часы максимумов нагрузки энергосистемы;
- •Разработка и внедрение способов и устройств аккумулирования энергии.
- •4. 6. Методы и перспективы прямого преобразования энергии
- •4.7. Транспорт и распределение энергии
- •Глава 5
- •5Л. Большие системы и их свойства
- •2. Понятие о топливно-
- •3. Технологический процесс в тэк. Топливно-энергетический баланс (тэб)
- •5. 4. Электроэнергетическая и теплоэнергетическая системы
- •5. 5. Учет энергосбережения
- •5. 6. Структура управления тэк
- •Энергосбережение — сложная большая система процессов рационального энергоиспользования в единстве технологий, организации и поведения. Концепция его учета в задачах развития и управления тэк:
- •Глава 6
- •Основные правовые и нормативные документы в области энергосбережения
- •Экономические и финансовые механизмы энергосбережения
- •Ценовое и тарифное регулирование
- •2 Зона "полупик" Рис. 6.5. График электропотребления за двое суток и зонные тарифы за электроэнергию. 4(0)
- •О нормировании
- •Принципы тарифов в условиях регулируемой рыночной экономики:
- •Глава 7
- •Способы и средства энергосбережения на предприятиях и фирмах
- •7. 2. Основные технические
- •7. 3. Энергетические аудиты и обследования
- •7. 4. Учет, контроль и управление энергопотреблением
- •7. 5. Эффективное использование энергии в населенных пунктах
- •7. 6. Энергосбережение в быту
- •Энергетические аудиты и обследования - основной инструмент энергетического менеджмента на всех его уровнях: национальном, отраслевом, региональном, городском, предприятия. Их
- •Глава 7. Прикладные проблемы эффективного использования энергии 239
- •Глава 8.
- •8. 1. Экологические эффекты энергосбережения
- •Поиск новых, альтернативных видов топлива, новых принципов получения, передачи, преобразования энергии, при которых полезный эффект достигался бы при минимальном загрязнении биосферы.
- •Международное нормативно-правовое регулирование пользования природными ресурсами, в том числе энергетическими, и мониторинг энергетического загрязнения биосферы.
- •8. 2. Нетрадиционные возобновляемые источники энергии
- •Глава 8. Экология энергосбережения образуется на Солнце за счет синтеза легких элементов - водорода и гелия.
- •Вторичные энергоресурсы
- •Местные виды топлива
- •Энергетический потенциал вторичных энергоресурсов (бэр),
- •7. Важно и необходимо искать новые идеи и технические решения в области применения возобновляемых, вторичных и местных эр.
- •Глава 6.
- •Глава 7.
- •Поспелова Татьяна Григорьевна основы энергосбережения
- •Уп "Технопринт ”.
- •220027, Минск, пр-т ф.Скорины, 65, корп.14, тел. 231-86-93,239-91-57.
Оптимизация структуры генерирующих мощностей, т.Е. Рациональный выбор числа, видов, установленной мощности электрических станций;
Разработка и использование системы социально-экономических мероприятий, стимулирующих потребителя к уменьшению потребления в часы максимумов нагрузки энергосистемы;
Разработка и внедрение способов и устройств аккумулирования энергии.
Рассмотрим технические возможности аккумулирования различных видов энергии.
Механические системы аккумулирования энергии: гидро- и газоаккумулирующие станции, маховые колеса.
Небольшие реки, каких много в Беларуси, малопригодны для регулирования мощности в энергосистеме, так как они не успевают заполнить водой водохранилище. Задачу снятия пиков нагрузки могут помочь решить гидроаккумулирующие станции (ГАЭС). Принципиальная схема ГАЭС дана на рис. 4.8. Когда электрическая нагрузка в ЭС минимальна, вода из нижнего водохранилища перекачивается в верхнее, при этом потребляется электроэнергия из системы, т.е. ГАЭС работает в двигательном режиме. В режиме непродолжительных пиков-максимумов нагрузки ГАЭС работает в генераторном режиме и, расходуя запасенную в верхнем водохранилище воду, выдает электроэнергию в ЭС. Рельеф Беларуси отличается наличием естественных перепадов местности, что позволяет сооружать станции с небольшим напором 80-110 м. Для Белорусской энергосистемы характерен значительный дефицит маневренной мощности, поэтому сооружение ГАЭС было бы весьма полезно.
Рис.
4.8. Принципиальная схема ГАЭС.
Первые ГАЭС в начале XX в имели КПД не выше 40%, у современных его значение достигает 70-75%. На рис. 4.9 представлены возможные компоновки гидроаккумулирующих станций. На первых ГАЭС для выработки электроэнергии использовали турбины Т и генераторы Г, а для перекачки воды в верхний бассейн - электрические двигатели Д и насосы Н. Такие станции назвали 4-машинными (рис. 4.9а). Сокращение числа машин существенно снижает стоимость ГАЭС и открывает перспективы для их применения. Объединение функций генератора и двига
теля в одной машине привело к 3-машинной компоновке станций (рис. 4.96). ГАЭС стали особенно эффективными после появления обратимых гидротурбин, выполняющих функции и турбин, и насосов (рис. 4.9в). Количество машин на станции в этом случае сокращается до двух, однако при 2-машинной компоновке КПД более низкий в связи с определенными трудностями технического характера. Весьма перспективно сочетание в энергетической системе ГАЭС и ветровых электростанций.
Идея сохранять запасенную ранее энергию в виде механической энергии сжатых газов не нова и насчитывает уже около 40 лет. Однако ее реальное воплощение требует решения многих технических проблем. Принцип работы воздухоаккумулирующей станции состоит в следующем: «внепиковая» электрическая энергия ЭС используется для привода компрессора, нагнетающего под давлением воздух в подземную полость (естественная пещера, заброшенная шахта или специально созданная полость); когда требуется использовать запасенную энергию, воздух под давлением направляется на ГТУ, вырабатывающую электрическую энергию и отдающую ее в сеть ЭС в период пика нагрузки. В Германии имеется опыт эксплуатации подобной электростанции. КПД воздухоаккумулирующей станции при сегодняшнем уровне техники может составлять 70%.
Идея аккумулирования энергии в виде механической энергии сжатых газов, в частности водорода, весьма перспективна'для реализации в
т
ранспортных
системах. Водород - наиболее экологически
чистое топливо. Во многих странах
ведутся интенсивные научно-исследовательские
работы по его использованию на
автомобильном транспорте. Водород Н,
может храниться не только в газообразной
форме, но и в жидкой, а также как
составная часть какого- либо химического
соединения. Вариантом компактного и
безопасного хранения водорода явля-
Рис.4.9. Компоновки ГАЭС.
стся хранение его в составе особого класса компаундов — металлических гидридов: MgH2, MgNiH4и т.п. В них атомарный водород Н «растворен» в металле. Система аккумулирования с использованием металлических гидридов привлекательна для электромобилей будущего без загрязненных выхлопов.
Супермаховик - это маховое колесо, которое можно разгонять до очень высой скорости вращения, не боясь его разрыва. Запасаемая им энергия - это кинетическая энергия вращения самого колеса. Маховик соединен с валом генератора и помещен в герметичный корпус, где для уменьшения потерь от трения поддерживается вакуум. Устройство работает как генератор, когда возрастает потребление энергии в ЭС, и как электродвигатель, когда энергию целесообразно аккумулировать. К преимуществам маховиков как аккумуляторов можно отнести высокий КПД (80-90%), бесшумность работы, отсутствие загрязнения окружающей среды, быстроту зарядки и возможность размещения непосредственно вблизи потребителя. Недостатками являются трудность обеспечения высокой степени концентрации энергии, необходимость разгона маховика, значительная стоимость устройства и жесткие требования к материалу махового колеса по прочностным характеристикам из-за опасности разрушения при высоких скоростях. Разрабатываются механические системы аккумулирования энергии на базе маховых колес для транспортных систем. В частности, созданы образцы городских автобусов.
Электрические системы аккумулирования: электростатические и индуктивные системы.
Электростатическая система (рис. 4.10) - емкостный накопитель принципиально представляет собой электрический конденсатор, помещенный в вакуум. При подключении его к внешнему источнику тока осуществляется заряда конденсатора благодаря ориентации, смещению диполей диэлектрика и созданию разности потенциалов между пластинами конденсатора. Энергия аккумулируется в форме энергии однородного электрического поля конденсатора. После отключения внешнего источника конденсатор остается заряженным в течение значительного времени. Скорость утечки заряда определяется состоянием изоляции. При замыкании конденсатора на потребителя запасенная энергия выдается во внешнюю электрическую цепь.
Индуктивная система (рис. 4.11) конструктивно представляется катушкой индуктивности (соленоидом) с полым сердечником. При подсоединении ее к внешнему источнику в цепи протекает постоянный ток, создающий внутри и вокруг катушки постоянное магнитное поле. Электрическая энергия аккумулируется в виде энергии магнитного поля.
Рис.4.10.
Принцип действия емкостного накопителя
энергии.
Е
- напряженность электрического поля;
±q- электрический заряд
на обкладках конденсатора.
После отключения внешнего источника магнитное поле исчезает, а накопленная энергия поступает обратно в электрическую цепь. Обычные катушки индуктивности как накопители энергии практического значения иметь не могут в силу неспособности их сохранять энергию сколько-нибудь длительное время. Практический интерес представля
ют сверхпроводящие катушки индуктивности с криогенной системой охлаждения, имеющие активное сопротивление равное нулю и могущие сохранять накопленную энергию в течение 10-12 часов. Однако такие системы достаточно дороги.
Индуктивные и емкостные накопители могут подключаться через выпрямители к электрической сети переменного тока. На сегодняшний день конструкций подобных накопителей, имеющих удовлетворительные промышленные характеристики, пока не создано.
Химические системы аккумулирования энергиипредполагают накопление химической энергии в форме энергии связи электронов с ядрами в атомах или связи атомов в молекулах. Пример химического механизма аккумулирования энергии - реакция, происходящая у электродов электрических батарей - электрохимических аккумуляторов.
Электрическая батарея - комбинация включенных параллельно или последовательно двух и более электрохимических элементов. Батарея заряжается путем питания электрической энергией от внешнего источника, которая в электрохимических элементах преобразуется в химическую энергию. При подключении электрической батареи на внешнюю нагрузку (потребителя) она снова выдает электрическую энергию. Таким образом, электрохимический аккумулятор работает в режиме «заряд - разряд». Современные конструкции электрохимических аккумуляторов не удовлетворяют ни требованиям централизованного производства электрической энергии, ни использованию в транспортных средствах. Находят применение в основном свинцово-кислотные аккумуляторы для запуска двигателей внутреннего сгорания, прежде всего в автомобилях.
Принципиальная схема электрохимического элемента показана на рис. 4.12. В электролит - слабо концентрированную серную кислоту H2S04погружены анод из пористого свинца РЬ, служащий топливом и отдающий электроны, и катод - набор сеток, заполненных перекисью свинца РЬ02, на котором происходит восстановление (поглощение) электронов е веществом-окислителем. Реакции, протекающие в электрохимическом элементе в режиме разряда при подключении на внешнюю нагрузку, имеют вид:
на аноде- РЬ - 2е + SO2' = PbSO„
4 4"
на катоде -РЬО, + 2е + 4Н+ + SO,2= PbSO+ 2Н О.
L 4 4 2
Рис.4.12.
Принципиальная схема электрохимического
элемента.
Аккумулятор работает, пока оба электрода не покроются сульфатом свинца PbS04. Восстановление аккумулятора осуществляется его зарядкой путем подключения к внешнему источнику напряжения.
Свинцово-кислотные аккумуляторы тяжелы, громоздки, обладают низкой мощностью на единицу массы и генерируют малое количество энергии на единицу массы. Перспективными считаются так называемые топливные элементы, которые будут рассмотрены в следующем параграфе. Они компактны, просты в эксплуатации и не загрязняют окружающую среду.
Аккумуляторы тепловой энергии. Различают две группы устройств накопления тепловой энергии.
В первой группе происходит аккумулирование явной теплоты. Ее накапливание осуществляется путем нагревания рабочего тела аккумулятора - большой массы какого-либо вещества, термически изолированного от внешней среды. Тот же принцип применяется для накопления холода: резервуар с рабочим телом охлаждается с помошью холодильной установки в ночное время, во время провала нагрузки энергосистемы.
Во второй группе устройств накопление тепловой энергии происходит путем аккумулирования скрытой теплоты. Это осуществляется в результате перехода рабочего тела из одного агрегатного состояния в другое: из твердого в жидкое, из жидкого в парообразное.
Передача тепла потребителю от аккумуляторов первой группы происходит за счет охлаждения рабочего тела и понижения его температу
ры, а от аккумуляторов второй группы — путем возвращения рабочего тела в первоначальное агрегатное состояние.
Аккумуляторы явной теплоты применяются в системах производства электроэнергии, в том числе на солнечных электростанциях. Аккумуляторы скрытой теплоты — для питания потребителей коммунальнобытового сектора (широко применяются в солнечных отопительных установках жилого сектора США), сферы обслуживания.
