Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава4_Блиничев.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.82 Mб
Скачать

4.3. Барботажные реакторы с циркуляционным контуром

При больших объемах реактора и малом тепловом эффекте реакции используют барботажные аппараты с мешалкой в циркуляционном контуре, которые могут быть выполнены в двух вариантах: с винтовой или пропеллерной мешалкой внутри циркуляционного стакана 3 (рис. 4.7а) и с открытой турбинной мешалкой, расположенной под циркуляционным стаканом (рис. 4.7б).

Аппарат с винтовой мешалкой внутри циркуляционного контура имеет отношение высоты корпуса Н к диаметру Н/Dр ≥ 5÷10.

Диаметр циркуляционного стакана 3 рассчитывается из условия равенства площадей сечения стакана и кольцевого зазора, образованного им со стенками сосуда.

Нижняя часть стакана имеет уменьшенное сечение, в нем размещена винтовая мешалка 4, выполняющая роль, как осевого насоса, так и диспергатора газа, подаваемого под мешалку.

Практика эксплуатации таких аппаратов показала, что в качестве насоса может быть использована мешалка с прямыми лопастями, имеющими угол наклона к горизонтали α = 15÷450.

Аппарат наиболее эффективно работает в условиях полного заполнения его объема газожидкостной смесью, поэтому выход непоглощенного газа и жидкости осуществляется через верхний штуцер, соединенный с сепаратором 1 газожидкостной смеси.

Рис. 4.7. Схемы барботажных аппаратов с винтовой (а) и турбинной (б) мешалками в циркуляционном контуре: 1 – сепаратор; 2 – корпус реактора; 3 – циркуляционный стакан; 4 – винтовая мешалка.

Конструктивно аппарат с одним циркуляционным стаканом может быть выполнен объемом до 20 м3. При установке в одном корпусе 2 нескольких стаканов со своими мешалками объем реактора можно увеличить до 100 м3, что позволяет существенно снизить удельные затраты энергии. Например, в аппарате с тремя стаканами удельные затраты энергии снижаются на 40 %.

Пропускная способность аппарата по газу определяется предельной скоростью его в циркуляционном стакане, которая не должна превышать 0,02 м/с (по свободному сечению аппарата).

В противном случае возможен срыв работы мешалки и нарушение циркуляции жидкости. Устойчивая работа мешалки определяется газосодержанием системы, предельная величина которого составляет εг ≈0,4, поэтому аппараты с мешалкой и циркуляционным контуром можно применять только для реакционных систем, которые не образуют устойчивых пен.

Если в реакции участвуют газы с возможным образованием взрывоопасной смеси, то аппарат с циркуляцией газожидкостной смеси является одним из наиболее надежных устройств, так как внутри аппарата не образуется больших объемов газов со взрывоопасной концентрацией.

Недостатком этих аппаратов является малая пропускная способность по газу, поэтому они применяются при малых и средних производительностях в реакторах как периодического, так и непрерывного действия.

4.4. Барботажный аппарат с большим тепловым эффектом реакции

При больших тепловых эффектах реакции целесообразно использовать барботажный газлифтный реактор, в котором газовый реагент поступает по штуцеру 7 в межтрубное пространство, ограниченное трубными решетками 8 (рис. 4.8), а затем направляется в отверстия 4 реакционных труб 2 и эжектирует жидкий реагент, поступающий в нижний штуцер 5.

Газовые пузыри поднимаются вверх и захватывают с собой жидкий реагент, который поднимается вверх в виде тонкого столба или пленки переменной толщины, в результате чего интенсифицируется теплообмен со стенкой реакционной трубки и строго поддерживается оптимальная температура процесса.

Остаточный непрореагировавший газ отделяется от жидкости в верхней сепарационной зоне реактора 1 и выходит в верхний штуцер.

Жидкий реагент с малым газосодержанием опускается по центральной циркуляционной трубе, смешивается со свежим реагентом и вновь поступает в реакционные трубки 2, контактируя со свежим газом. Подобная циркуляция осуществляется до заданной степени превращения по жидкой фазе. Давление газа в этих аппаратах должно быть достаточным для преодоления гидравлического сопротивления барботажной и циркуляционной труб контура.

Рис. 4.8. Схема кожухотрубного газлифтного аппарата: 1 – корпус реактора; 2 – реакционные трубы; 3 – центральная переливная труба; 4 – отверстия для подачи газового реагента; 5 – штуцер ввода жидкого реагента; 6 – вывод жидкого продукта; 7 – штуцер ввода газа; 8,9 – трубные решетки

Достоинством таких аппаратов является проведение реакции при четко заданной температуре даже при больших тепловых эффектах реакции. Теплоноситель подается в межтрубное пространство, ограниченное трубными решетками 8 и 9. На рис. 4.8 представлена схема аппарата с экзотермическим эффектом реакции, так как в межтрубном пространстве подается пар. Нижней трубной решетки 8 может и не быть, но при этом должен поддерживаться уровень жидкого реагента примерно на уровне нижней трубной решетки 8.

Одной из основных задач гидродинамического и теплового расчета данного реактора является определение скорости циркуляции газожидкостной смеси или приведенной скорости жидкости в реакционных трубах.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]