Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Часть 2КИиТП ( для студентов)1.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.98 Mб
Скачать

2. Независимость криволинейного интеграла от пути интегрирования.

Пусть и - произвольные точки односвязной области пл. . Криволинейные интегралы, вычисленные по различным кривым, соединяющим эти точки, в общем случае имеют различные значения. Но при выполнении некоторых условий все эти значения могут оказаться одинаковыми. Тогда интеграл не зависит от формы пути, а зависит только от начальной и конечной точек.

Имеют место следующие теоремы.

Теорема 1. Для того, чтобы интеграл не зависел от формы пути, соединяющего точки и , необходимо и достаточно, чтобы этот интеграл по любому замкнутому контуру был равен нулю.

Теорема 2. . Для того, чтобы интеграл по любому замкнутому контуру был равен нулю, необходимо и достаточно, чтобы функции и их частные производные были непрерывны в замкнутой области Г и чтобы выполнялось условие (11.2)

Таким образом, если выполняются условия независимости интеграла от формы пути (11.2), то достаточно указать только начальную и конечную точки: (11.3)

Теорема 3. Если в односвязной области выполняется условие , то существует функция такая, что . (11.4)

Эта формула называется формулой Ньютона – Лейбница для криволинейного интеграла.

Замечание. Напомним, что равенство является необходимым и достаточным условием того, что выражение является полным дифференциалом некоторой функции .

Тогда из выше сформулированных теорем следует, что если функции и их частные производные непрерывны в замкнутой области Г , в которой даны точки и , и , то

а) существует функция , такая, что ,

б) криволинейный интеграл от полного дифференциала некоторой функции не зависит от формы пути, ,

в) имеет место формула Ньютона – Лейбница .

Пример 11.2. Убедимся в том, что интеграл не зависит от формы пути, и вычислим его.

Решение. .

П

Рисунок 11.3

роверим выполнение условия (11.2) . . Как видим, условие выполнено. Значение интеграла не зависит от пути интегрирования. Выберем путь интегрирования. Наиболее

простым путём для вычислений является ломаная линия АСВ, соединяющая точки начала и конца пути. ( См. рис. 11.3)

Тогда .

3. Нахождение функции по её полному дифференциалу.

С помощью криволинейного интеграла, который не зависит от формы пути, можно найти функцию , зная её полный дифференциал. Эта задача решается следующим образом.

Если функции и их частные производные непрерывны в замкнутой области Г и , то выражение является полным дифференциалом некоторой функции . Кроме этого интеграл , во-первых, не зависит от формы пути и, во-вторых, может быть вычислен по формуле Ньютона – Лейбница.

Вычислим двумя способами.

а

Рисунок 11.4

) Выберем в области точку с конкретными координатами и точку с произвольными координатами. Вычислим криволинейный интеграл по ломаной, состоящей из двух отрезков прямых, соединяющих эти точки, причём один из отрезков параллелен оси , а другой – оси . Тогда . (См. рис. 11.4)

Уравнение .

Уравнение .

Получаем: Вычислив оба интеграла, получаем в ответе некоторую функцию .

б) Теперь тот же интеграл вычислим по формуле Ньютона – Лейбница.

.

Теперь сравним два результата вычисления одного и того же интеграла. Функциональная часть ответа в пункте а) является искомой функцией , а числовая часть – её значением в точке .

Пример 11.3. Убедимся в том, что выражение является полным дифференциалом некоторой функции и найдём её. Проверим результаты вычисления примера 11.2 по формуле Ньютона-Лейбница.

Решение. Условие существования функции (11.2) было проверено в предыдущем примере. Найдём эту функцию, для чего воспользуемся рисунком 11.4, причём примем за точку . Составим и вычислим интеграл по ломаной АСВ, где :

.

Как было сказано выше, функциональная часть полученного выражения и есть искомая функция .

Проверим результат вычислений из примера 11.2 по формуле Ньютона –Лейбница:

.

Результаты совпали.

Замечание. Все рассмотренные утверждения верны и для пространственного случая, но с большим количеством условий.

Пусть кусочно-гладкая кривая принадлежит области в пространстве . Тогда, если функции и их частные производные непрерывны в замкнутой области , в которой даны точки и , и (11.5), то

а) выражение является полным дифференциалом некоторой функции ,

б) криволинейный интеграл от полного дифференциала некоторой функции не зависит от формы пути и ,

в) имеет место формула Ньютона – Лейбница .(11.6)

Пример 11.4. Убедимся в том, что выражение является полным дифференциалом некоторой функции и найдём её.

Решение. Для ответа на вопрос о том, является ли данное выражение полным дифференциалом некоторой функции , вычислим частные производные от функций , , . (См. (11.5)) ; ; ; ; ; .

Эти функции непрерывны вместе со своими частными производными в любой точке пространства .

Видим, что выполняются необходимые и достаточные условия существования : , , , ч. т. д.

Т.е. .

Для вычисления функции воспользуемся тем, что линейный интеграл не зависит от пути интегрирования и может быть вычислен по формуле Ньютона-Лейбница. Пусть точка - начало пути, а некоторая точка - конец пути. Вычислим интеграл

по контуру, состоящему из отрезков прямых, параллельных координатным осям. (см.рис.11.5 Рисунок 12).

.

У

Рисунок 11.5

равнения частей контура: , , .

Тогда

, x здесь зафиксирован, поэтому ,

, здесь зафиксирован y, поэтому .

В итоге получаем: .

Теперь тот же интеграл вычислим по формуле Ньютона-Лейбница.

Приравняем результаты: .

Из полученного равенства следует, что , а

Ответ: .

Занятие 12.

Поверхностный интеграл первого рода: определение, основные свойства. Правила вычисления поверхностного интеграла первого рода с помощью двойного интеграла. Приложения поверхностного интеграла первого рода: площадь поверхности, масса материальной поверхности, статические моменты относительно координатных плоскостей, моменты инерции и координаты центра тяжести. ОЛ-1 гл.6, ОЛ 2 гл.3, ОЛ-4 § 11.

Практика: ОЛ-6 №№ 2347, 2352, 2353 или ОЛ-5 №№ 10.62, 65, 67.

Домашнее задание к занятию 12:

ОЛ-6 №№ 2348, 2354 или ОЛ-5 №№ 10.63, 64, 68.