Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 1-2013.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
598.02 Кб
Скачать

1.3. Некоторые законы распределений случайных величин

В теории вероятностей и математической статистике выводится большое количество специальных законов распределений СВ, широко используемых в различных отраслях науки и техники. Мы ограничимся рассмотрением лишь тех, которые наиболее часто применяются в эконометрическом анализе. Эти распределения используются для нахождения интервальных оценок, при проверке статистических гипотез, в дисперсионном и регрессионном анализе. Для удобства практического использования распределений СВ разработаны таблицы α-квантилей (критических точек), которые позволяют быстро и эффективно оценивать соответствующие вероятности [16] (см. Приложения).

Критической точкой уровня α (α-квантилем) называется такое значение хα СВ Х, при котором выполняется условие:

(правосторонний критерий). (1.11)

С геометрической точки зрения нахождение квантиля хα заключается в выборе такого значения х, при котором площадь заштрихованной области на рис. 1.4 была бы равна α.

Рис. 1.4.

Для симметричных относительно оси ординат распределений можно ввести понятие двустороннего α-квантиля – Р(|х| > xα). Нахождение α-квантиля (критической точки) определяется величиной (уровнем значимости) самого α и числом степеней свободы рассматриваемых распределений.

1.3.1. Нормальное распределение

Нормальный закон распределения (распределение Гаусса) является предельным случаем почти всех реальных распределений вероятности. Поэтому он используется в очень большом числе практических приложений.

Непрерывная СВ Х имеет нормальное распределение, если ее плотность вероятности имеет вид:

. (1.12)

Нормальное распределение (рис. 1.5) полностью определяется двумя параметрами  математическим ожиданием m = M(X) и средним квадратическим отклонением  σ = σ(Х)  и символически обозначается Х ~ N(m, σ2) или X ~ N(m, σ). При изменении числовой характеристики m нормальная кривая перемещается вдоль оси Ох, при изменении σ меняется форма кривой. Нормальный закон распределения с числовыми характеристиками (параметрами) m = 0 и σ2 = 1 называется стандартным распределением.

Рис. 1.5.

Для практических расчетов вероятностей СВ, подчиняющихся нормальному распределению, удобно пользоваться таблицами значений функции Лапласа (Приложение 1). Функция (интеграл вероятностей) Лапласа Ф(u) имеет вид:

(1.13)

где F(u)  функция стандартного нормального распределения СВ U, . Тогда вероятность попадания СВ Х, распределенной по нормальному закону, в интервал [х1, х2].

Р(х1 £ Х £ х2) = Ф(u2) – Ф(u1), (1.14)

где .

Кроме того, справедливы следующие соотношения: Р(|Хm| < σ) = 0,68; P(|Хm| < 2σ) = 0,95; P(|Хm| < 3σ) = 0,9973, где |Хm|  отклонение СВ Х от математического ожидания. Другими словами, значения нормально распределенной СВ Х на 95 % сосредоточены в области (m  2σ, m + 2σ) и на 99,73 % сосредоточены в области (m  3σ, m + 3σ).

Следует также отметить, что линейная комбинация произвольного количества нормальных СВ имеет нормальное распределение.

В том случае, когда логарифм СВ подчинен нормальному закону, говорят, что она имеет логарифмически нормальное (логнормальное) распределение.