- •Н. М. Абдикеев проектирование интеллектуальных систем в экономике
- •Раздел IV. Прикладные интеллектуальные системы в экономике Глава 10 Интеллектуальная система планирования производства.
- •Глава 11. Динамическая интеллектуальная система оперативно-диспетчерского управления предприятием.
- •Глава 12. Информационно-аналитические системы управления маркетингом
- •Глава 13. Информационно-аналитическая система поддержки банковских решений.
- •Глава 14. Экспертная система риск-менеджмента.
- •Раздел I. Тенденции развития информационных систем в экономике.
- •Глава 1. Информационные системы при интегрированном автоматизированном управлении экономическими объектами.
- •Классификация информационных систем.
- •Области применения информационных систем в экономике.
- •Интегрированное автоматизированное производство, планирование и управление.
- •Интегрированные экономические информационные системы.
- •Глава 2. Тенденции развития информационных систем поддержки решений.
- •2.1. Направления развития информационных систем.
- •Основные технологические тенденции.
- •Технологии сетевых вычислений.
- •2.2. Моделирование и анализ ситуаций.
- •Моделирование и анализ ситуаций принятия решений.
- •2.3. Процесс подготовки и принятия решений.
- •2.4. Новая технология решения задач управления.
- •Глава 3. Интеллектуальные системы на основе инженерии знаний и искусственного интеллекта.
- •3.1. Организация работы с данными и знаниями. Инженерия знаний.
- •Данные. Источники данных.
- •Структура данных и системы управления базами данных.
- •Хранилище данных.
- •Olap: оперативная аналитическая обработка данных.
- •Интеллектуальный анализ данных.
- •Интеллектуальные базы данных.
- •Знания в искусственном интеллекте. База знаний.
- •Система управления базой знаний
- •Обработка знаний.
- •Инженерия знаний.
- •3.2. Развитие исследований в области искусственного интеллекта.
- •3.3. Теория и практика искусственного интеллекта.
- •3.4. Интеллектуальные информационные системы поддержки решений.
- •Раздел II. Модели и методы интеллектуальных систем.
- •Глава 4. Экспертные системы – системы, базирующиеся на знаниях.
- •4.1. Экспертные системы – основная разновидность интеллектуальных систем.
- •4.2.Функциональные возможности и характеристика эс.
- •4.3. Области применения экспертных систем.
- •4.4. Стратегические и динамические эс.
- •Глава 5. Представление знаний в интеллектуальных системах.
- •5.1. Проблемы представления и моделирования знаний.
- •5.2. Представление знаний на основе фреймов и семантических сетей.
- •5.2.1. Фреймы.
- •5.2.2. Семантические сети.
- •5.3. Продукционные и логические модели представления знаний.
- •5.3.1. Продукционные модели.
- •5.3.2. Логические модели представления знаний Исчисление предикатов
- •Вывод на предикатах.
- •Процесс стандартизации.
- •5.4. Представление и формализация нечетких знаний.
- •Основные определения нечетких множеств.
- •Операции с нечеткими множествами.
- •Нечеткие отношения.
- •Нечеткая и лингвистическая переменные.
- •Нечеткие числа и функции
- •Лингвистические критерии и отношения предпочтения.
- •Нейронные сети.
- •От биологических сетей к инс
- •Биологические нейронные сети
- •Основные понятия
- •Обучение
- •Глава 6. Обработка знаний и вывод решений в интеллектуальных системах.
- •6.1. Методы вывода и поиска решений в продукционных системах. Методы вывода на основе прямой и обратной цепочек.
- •Общие методы поиска решений в пространстве состояний.
- •Методы поиска решений в больших пространствах состояний.
- •6.2. Выводы на фреймах и в семантических сетях.
- •6.2.1. Вывод на фреймах. Структура данных фрейма.
- •Процедуры – демоны и присоединенные процедуры (методы или служебные).
- •Взаимодействие фреймов и правил.
- •Вывод во фреймовой системе.
- •6.2.2. Вывод в семантических сетях.
- •Структурирование знаний в семантической сети.
- •Процедурные семантические сети.
- •Вывод в семантических сетях.
- •6.3. Дедуктивные методы поиска решений.
- •6.4. Поиск решений в условиях неопределенности. Неопределенность.
- •6.4.1. Вероятностный вывод. Вероятностный подход.
- •Байесовский вывод.
- •Вывод на основе теории Демпстера-Шафера.
- •6.4.2. Вывод на основе теории уверенности. Коэффициент уверенности и доверие.
- •Объединение коэффициентов уверенности.
- •6.4.3. Нечеткая логика и приближенные рассуждения.
- •Приближенные рассуждения.
- •Композиционное правило вывода.
- •6.5. Вывод в нейронных сетях. Обработка информации в нейронных сетях.
- •Обучение инс и обучающие алгоритмы.
- •Архитектура многослойной сети прямого распространения.
- •2. Самоорганизующиеся карты Кохонена.
- •3. Модели теории адаптивного резонанса.
- •Сеть Хопфилда.
- •Ассоциативная память
- •Раздел III. Проектирование интеллектуальных систем.
- •Глава 7. Разработка и проектирование интеллектуальных систем.
- •7.1. Этапы проектирования интеллектуальных систем.
- •7.2. Анализ предметной области и методы приобретения знаний. Предметная и проблемная области.
- •Выявление источников знаний.
- •7.3. Работа с экспертами и проблема извлечения знаний.
- •7.4. Автоматизация извлечения знаний и формирования модели.
- •Краткая характеристика проблемной области.
- •Характеристика интеллектуальной системы прогнозирования.
- •Концептуальная модель (км) производства.
- •Глава 8. Архитектура интеллектуальных систем.
- •8.1. Структура интеллектуальной системы.
- •8.2. Проектирование базы знаний.
- •Понятие знания в контексте исследуемой проблемной области.
- •Оценка пространства поиска решений.
- •Выбор способа представления знаний.
- •Структура бз и взаимодействие с другими компонентами ис.
- •8.3. Разработка механизма вывода решений.
- •8.4. Объяснение и обоснование решений.
- •8.5. Интеллектуальный интерфейс.
- •Виды интерфейса.
- •Графика.
- •Мультимедиа и гипермедиа.
- •Виртуальная реальность.
- •Естественный язык.
- •Глава 9. Инструментальные средства проектирования интеллектуальных систем.
- •9.1. Анализ традиционных языков программирования и представления знаний.
- •9.1.1. Специализированный язык lisp.
- •9.1.2 Фрейм – ориентированный язык frl.
- •9.1.3 Язык логического программирования prolog.
- •9.1.4. Продукционный язык ops.
- •9.2. Современные программные средства построения интеллектуальных систем.
- •9.2.1. Объектно-ориентированный язык Visual Basic.
- •Возможности языка Visual Basic для создания эс.
- •9.2.2. Язык логического программирования Visual Prolog.
- •9.2.3. Интегрированная инструментальная среда guru.
- •9.2.4. Интегрированная инструментальная среда g2 для создания интеллектуальных систем реального времени.
- •Использование мощности объектно-ориентированного программирования
- •Работа в Реальном времени
- •Динамическое моделирование и моделирование для анализа " что- если "
- •Раздел IV. Прикладные интеллектуальные системы в экономике.
- •Глава 10. Интеллектуальная система планирования производства.
- •10.1 Производственная программа предприятия и календарное планирование.
- •10.2 Исследование предметной области и системы управления производством. Характеристика объекта управления нефтеперерабатывающего производства
- •Технология плановых расчетов.
- •Интегрированное автоматизированное управление производством.
- •10.3. Специфика функционирования и архитектура интеллектуальной системы планирования и управления производством.
- •10.4. Имитационное моделирование процесса расчета плана. Формализация задачи планирования нефтеперерабатывающего производства на основе имитационного моделирования.
- •Принципы реализации имитационной модели планирования нефтеперерабатывающего производства
- •2. Для каждой стадии определяется расчетная схема, в виде совокупности отношений, определяющих расчет производственной программы установок входящих в данную стадию.
- •10.5. Учет неопределенности в системе.
- •Процедуры принятия решений при планировании производства во взаимодействии с имитационной моделью планирования в эис
- •Глава 11. Динамическая интеллектуальная система оперативно – диспетчерского управления предприятием.
- •11.1. Оперативно – диспетчерское управление предприятием
- •11.2 Функционирование интеллектуальной системы диспетчерского управления в составе исуп в реальном времени.
- •3) Рекомендации пользователю по действиям в сложившейся производственной ситуации.
- •11.3 Представление знаний и вывод решений в системе. Фреймово – продукционная модель представления заданий в иис.
- •Механизм вывода решений и рекомендаций в иис.
- •11.5 Имитационная прогнозирующая модель для оперативных интервалов времени
- •11.5.1 Принципы построения имитационной прогнозирующей модели.
- •11.5.2 Построение имитационной модели производства на базе Сети Петри.
- •11.5.3 Моделирование неопределенности ситуаций в имитационной прогнозирующей модели
- •11.5.4 Процедуры принятия решений при диспетчерском управлении во взаимодействии с имитационной прогнозирующей моделью иис.
- •Глава 12. Информационно-аналитические системы поддержки решений в маркетинге.
- •12.1. Процесс управления маркетингом.
- •12.2. Информационно – аналитические системы поддержки маркетинговых решений.
- •Типы структур управления торговыми сетями.
- •Классификация каналов связи.
- •Системы crm.
- •12.4 Интернет – маркетинг и электронная коммерция.
- •Глава 13. Информационно-аналитическая система поддержки банковских решений.
- •13.1. Анализ предметной области.
- •Система управления кредитными операциями
- •13.2. Система оценки кредитоспособности заемщика.
- •Анализ финансового состояния заемщика.
- •Система финансовых коэффициентов (рейтинг заемщика).
- •Ликвидные средства 2-го класса
- •Ликвидные средства 3-го класса
- •Объем и структура долговых обязательств
- •Рейтинг заемщика
- •Моделирование бизнес-процессов в системе.
- •Визуальное моделирование.
- •Предоставление вариантов использования.
- •Логическое представление
- •Регистрация нового клиента
- •Анализ финансового состояния заемщика
- •13.4. Архитектура системы и характеристика функциональных блоков.
- •Подсистема анализа залоговых средств
- •Подсистема учета кредитной истории
Инженерия знаний.
Инженерия знаний представляет собой совокупность моделей, методов и технических приемов, нацеленных на создание систем, которые предназначены для решения проблем с использованием знаний. Знания – это информация с ограниченной семантикой, однако с позиции прикладных аспектов необходимо, чтобы знания имели такую форму, которой была бы в определенной степени свойственна свобода достижения поставленной цели. В какой именно степени допустима эта свобода, или каким условиям должны отвечать знания, включая и их описательные возможности, зависит от области их приложения. В сфере технического применения и в экономике используется самая разнообразная среда представления, и помимо языкового описания она включает рисунки, математические формулы и т.п.
Хотя языковое представление и ограничено сравнительно простыми формализмами, оно не всегда удобно для технической и экономической областей. Это связано с их специфическим характером, т.к. в них все определяется фактами и объективной реальностью.
В дальнейшем изложении языковое описание, требуемое в прикладных областях информации (включая язык в широком его понимании и графику), будет называться языком представления знаний. Для использования подобной информации в виде знаний требуются интеллектуальные функции, превосходящие пока возможности современных компьютеров. Представление знаний, их обработка и использование, рассматриваемое применительно к конкретной прикладной области, является предметом инженерии знаний.
Инженерия знаний заняла свое место как технология применения знаний, когда вышла из недр ИИ и продолжала интенсивно развиваться все последние года.
Существом ИИ можно считать научный анализ и автоматизацию интеллектуальных функций человека. Однако для большинства проблем общей реальностью является трудность их машинного воплощения.
Исследования по ИИ позволили утвердиться во мнении, что подлинно необходимыми для решения проблем являются знания экспертов. То есть, если создать систему, способную запоминать и использовать знания экспертов, то она найдет применение в практической деятельности.
И когда исследователи по ИИ действительно создали подобного ряда системы в конце 60-х и начале 70-х годов прошлого века, все эти воззрения были подтверждены.
Это системы DENDRAL [78], а позднее MYCIN, созданные под руководством Э. Фейгунбаума в Стэнфордском университете США, Поскольку эти системы накапливают в памяти компьютера знания экспертов и используют эти знания для решения проблем, извлекая их при необходимости из памяти, то они получили название экспертных, а профессор Э. Фейгенбаум, являющийся одним из создателей экспертных систем (ЭС), выдвинул для данной области техники название «инженерия знаний».
Фактически инженерия знаний – это методология ЭС, которая охватывает методы добычи, анализа и выражения в правилах знаний экспертов. Развитие ЭС создало инженерию знаний – процесс построения интеллектуальных систем.
Инженерия знаний тесно связана со всем процессом разработки интеллектуальных информационных систем в целом и ЭС в частности – от возникновения замысла до его реализации и совершенствования.
Главными элементами инженерии знаний являются использование операций типа обобщение, генерация гипотез для индуктивных выводов, подготовка новых программ самими компьютерными программами и т.д.
Слово engineering в английском означает искусная обработка предметов, изобретение или создание чего-либо. Следовательно, работу по оснащению программ специальными экспертными знаниями из проблемной области, выполняемую человеком, либо компьютером (программой), также можно назвать инженерией знаний.
