Третє покоління (1965–1970)
Як елементна база використовувались інтегральні схеми малої інтеграції з десятками активних елементів на кристал, а також гібридні мікросхеми з дискретних елементів. Основна технологія збірки — двосторонній друкований монтаж високої щільності. Це скоротило габарити і потужність, підвищило швидкодію, знизило вартість універсальних (великих) ЕОМ. Але найголовніше — з'явилась можливість створення малогабаритних, надійних, дешевих машин — мініЕОМ. МініЕОМ спочатку призначались для заміни апаратно-реалізованих контролерів у контурах управління різних об'єктів і процесів (зокрема ЕОМ). Поява мініЕОМ скоротила терміни розробки контролерів, оскільки замість розробки складних логічних схем потрібно купити мініЕОМ і запрограмувати її належним чином. Універсальний пристрій володів надмірністю, проте мала ціна і універсальність периферії виявились значною перевагою, що забезпечило високу економічну ефективність.
Але незабаром споживачі виявили, що після невеликого допрацювання на мініЕОМ можна вирішувати і обчислювальні завдання. Простота обслуговування нових машин та їхня низька вартість дозволили забезпечити подібними обчислювальними машинами невеликі колективи дослідників, розробників, навчальних закладів тощо. На початку 70-х років з терміном мініЕОМ вже пов'язували два істотно різні типи обчислювальної техніки:
контролер — універсальний блок обробки даних і видачі керівних сигналів, серійно випускається для використання в різних спеціалізованих системах контролю і управління;
універсальна ЕОМ невеликих габаритів, проблемно-орієнтована користувачем на обмежене коло завдань у рамках однієї лабораторії, технологічного ділянки тощо.
Четверте покоління (з 1970)
|
Цей розділ застарів. Будь ласка, допоможіть Вікіпедії, додавши до нього інформацію, що була недоступна раніше. (вересень 2013) |
Успіхи мікроелектроніки дозволили створити великі (ВІС) і надвеликі інтегральні схеми (НВІС), що містять десятки тисяч активних елементів. Одночасно зменшувались габарити дискретних електронних компонентів. Основною технологією збірки став багатошаровий друкований монтаж. Це дозволило розробити дешевші ЕОМ з великою оперативною пам'яттю. Вартість одного байта пам'яті і однієї машинної операції значно знизилась. Але витрати на програмування майже не скоротились, оскільки на перший план вийшло завдання економії людських, а не машинних ресурсів.
Для цього розроблялись нові операційні системи, що дозволяють користувачеві вести діалог з ЕОМ, що полегшувало роботу користувача і прискорювало розробку програм. Це зажадало, у свою чергу, вдосконалення організації одночасного доступу до ЕОМ кількох користувачів, що працюють з терміналів.
Удосконалення ВІС і НВІС призвело на початку 70-х років до появи нових типів мікросхем — мікропроцесорів (1968 фірма Intel на замовлення Дейта Дженерал розробила і виготовила перші мікропроцесорні БІС, які передбачалось використовувати як складові частини більших процесорів.).
У ті роки мікропроцесором вважалась ВІС, у якій повністю розміщений процесор простої архітектури, тобто Арифметико-логічний пристрій та пристрій обміну. В результаті були створені дешеві мікрокалькулятори та мікроконтролери — керівні пристрої, побудовані на одній або кількох ВІС, що містять процесор, пам'ять і пристрої сполучення з датчиками і виконавчими механізмами. З удосконаленням технології їхнього виробництва і, отже, падінням цін мікроконтролери почали впроваджуватись навіть у побутові прилади і автомашини.
У 70-их роках з'явились перші мікроЕОМ — універсальні обчислювальні системи, що складаються з процесора, пам'яті, схем сполучення з пристроями введення / виводу і тактового генератора, розміщені в одній ВІС (однокристальна мікроЕОМ) або в кількох ВІС, встановлених на одній друкованій платі (одноплатні мікроЕОМ).
Удосконалення технології дозволило виготовити НВІС, що містять сотні тисяч активних елементів, і зробити їх досить дешевими. Це призвело до створення невеликого настільного приладу, в якому розміщувалась мікроЕОМ, клавіатура, монітор, магнітний накопичувач (касетний або дисковий), а також схеми сполучення з малогабаритним друкувальним пристроєм, вимірювальною апаратурою, іншими ЕОМ тощо. Цей прилад отримав назву персональний комп'ютер.
Завдяки ОС, що забезпечує простоту спілкування з цією ЕОМ великих бібліотек прикладних програм, а також низької вартості персональний комп'ютер почав стрімко впроваджуватись у різних сферах людської діяльності в усьому світі. За даними на 1985 рік, загальний обсяг світового виробництва становив 200×106 мікропроцесорів і 10×106 персональних комп'ютерів.
У великих ЕОМ цього покоління спрощується контакт людина-машина. Використання у великих ЕОМ мікропроцесорів і НВІС дозволило значно збільшити обсяг пам'яті і реалізувати деякі функції програм ОС апаратними методами, наприклад апаратні реалізації трансляторів з мов високого рівня тощо. Це значно збільшило продуктивність ЕОМ, хоча і підвищило ціну.
Характерним для великих ЕОМ 4-го покоління є наявність кількох процесорів, орієнтованих на виконання певних операцій, процедур ,або вирішення певних класів завдань. У рамках цього покоління створюються багатопроцесорні обчислювальні системи зі швидкодією кілька десятків або сотень мільйонів операцій/с і багатопроцесорні керувальні комплекси підвищеної надійності з автоматичною зміною структури.
Прикладом обчислювальної системи 4-го покоління є багатопроцесорний комплекс «Ельбрус-2» з сумарним швидкодією 100×106 оп/с або обчислювальна система ПС-2000, що містить до 64 процесорів, керованих загальним потоком команд. При розпаралелювання обчислювального процесу сумарна швидкість досягає 200×106 оп/с. Подібні суперЕОМ розвивають максимальну продуктивність тільки при вирішенні певних типів завдань (під які вони й будувалися). Це, перш за все, завдання суцільних середовищ, пов'язані з аеродинамічними розрахунками, прогнозами погоди, силовими енергетичними полями тощо. Виробництво суперЕОМ у всьому світі складає нині десятки штук на рік, і будуються вони, зазвичай, «під замовлення».
Начало формы
Конец формы
