- •1.Основные понятия системного анализа
- •1.1.Определения и свойства системы
- •1.2.Виды описаний систем
- •1.3.Понятие системного подхода
- •1.4.Аспекты системного подхода
- •2.Классификация систем
- •3.Модели систем
- •4.Постановка задач принятия решений.
- •5.Классификация задач принятия решений.
- •6.Этапы решения задач.
- •6.1.Одношаговые схемы принятия решения
- •6.2.Многошаговые решения
- •7.Экспертные процедуры.
- •7.1. Задачи оценивания.
- •7.2. Алгоритмы экспертизы.
- •7.3 Методы получения экспертной информации.
- •7.4. Шкалы измерений, методы экспертных измерений.
- •7.5.Проверка согласованности мнений экспертов и классификация экспертных мнений.
- •7.6.Нахождение итогового мнения комиссии экспертов.
- •7.6.1.Бинарные отношения и расстояние Кемени.
- •7.6.2.Медиана Кемени и законы больших чисел.
- •7.7. Основные стадии экспертного опроса.
- •7.8. Оценка компетентности экспертов.
- •7.9. Методы обработки экспертной информации.
- •7.9.1. Статистические методы
- •7.9.2. Алгебраический метод.
- •7.9.3 Методы шкалирования.
- •2. Метод троек.
- •8. Формирование исходного множества альтернатив и Морфологический анализ.
- •8.1. Общая характеристика алгоритмов
- •8.2. Алгоритмы формирования има
- •8.3. Морфологический анализ.
- •9.Методы многокритериальной оценки альтернатив.
- •9.1. Различные группы задач принятия решений.
- •9.2.Многокритериальная теория полезности (maut)(Аксиоматические методы многкритериальной оценки).
- •9.2.1. Основные этапы подхода maut
- •9.2.2. Аксиоматическое обоснование
- •9.2.3.Основные теоремы.
- •9.2.4.Построение однокритериальных функций полезности
- •9.2.5. Проверка условий независимости
- •9.3.Проверка условий независимости по полезности
- •9.2.6.Определение весовых коэффициентов (коэффициентов важности) критериев
- •9.2.7.Определение полезности альтернатив
- •9.2.8.Веса критериев
- •9.2.9.Как люди назначают веса критериев
- •9.2.10.Практическое применение
- •9.2.11.Метод smart - простой метод многокритериальной оценки.
- •9.2.12.Первый эвристический метод
- •9.2.13.Выводы
- •9.3. Подход аналитической иерархии.
- •9.3.1.Основные этапы подхода аналитической иерархии
- •9.3.2.Структуризация
- •9.3.3.Попарные сравнения.
- •9.3.4.Определение наилучшей альтернативы
- •9.3.5.Проверка согласованности суждений лпр
- •9.3.6.Система поддержки принятия решений Expert Choice
- •9.3.7.Контрпримеры и противоречия.
- •9.4.Мультипликативный метод аналитической иерархии
- •9.5.Пример практического применения подхода анр
- •9.6.Выводы
- •9.7. Методы electre(Прямые методы многокритериальной оценки альтернатив).
- •9.7.1.Конструктивистский подход
- •9.7.2.Два основных этапа
- •9.7.3.Свойства бинарных отношений
- •9.8.Метод electre I
- •9.8.1.Этап разработки индексов
- •9.8.2.Этап исследования множества альтернатив
- •9.9.Метод electre II
- •9.9.1.Этап разработки индексов
- •9.9.2.Этап исследования множества альтернатив
- •9.10.Метод electre III
- •9.10.1. Этап разработки индексов
- •9.10.2.Этап исследования альтернатив
- •Пример.
- •9.10.3.Пример практического применения метода electre III
- •9.10.4.Некоторые сопоставления
- •9.11.Выводы
- •10.Деревья решений.
- •Рнс. 10.1. Дерево решений
- •11. Методы принятия решений в многокритериальных задачах и постулируемые принципы оптимальности.
- •11.1.Метод главного критерия
- •11.2.Метод доминантной структуры (альтернативы)
- •11.3.Метод "эффективность - стоимость"
- •11.4.Построение множества Парсто (компромиссы Парето)
- •11.5.Отказ от рассмотрения проблемы многокритериального выбора
- •11.6.Методы порогов сравнимости
- •11.7.Компромиссное распределение ресурсов между целями.
- •11.8.Метод деревьев решений
- •11.9.Метод решения многокритериальных задач при вычислимых критериях
- •12. Вербальный анализ решений и диалоговые методы принятия решений.
- •12.1. Особый класс задач принятия решений: неструктуризованные проблемы с качественными переменными
- •12.2. Качественная модель лица, принимающего решения
- •12.2.1. Черты человеческой системы переработки информации
- •12.2.2. Особенности поведения человека при принятии решений
- •12.3. Какими должны быть методы анализа неструктуризованных проблем
- •12.4. Измерения
- •12.4.1. Качественные измерения
- •12.4.2. Сравнительные качественные оценки
- •12.5. Построение решающего правила
- •12.6. Проверка информации лпр на непротиворечивость
- •12.7. Обучающие процедуры
- •12.8. Получение объяснений
- •12.9. Основные характеристики методов вербального анализа решений
- •12.10. Метод запрос (зАмкнутые пРоцедуры у Опорных Ситуаций)
- •12.10.1. Постановка задачи
- •12.10.2. Пример: как оценить проекты?
- •12.11. Выявление предпочтений лпр
- •12.11.1.Единая порядковая шкала для двух критериев
- •12.11.2.Проверка условия независимости для двух критериев
- •12.11.3.Независимость по понижению качества для группы критериев
- •12.11.4.Единая порядковая шкала оценок всех критериев
- •12.11.5.Проверка информации лпр на непротиворечивость
- •12.11.6.Частный случай
- •12.11.7. Психологическая корректность процедуры выявления предпочтений лпр
- •12.12.Сравнение альтернатив.
- •12.12.1.Упорядочение группы заданных альтернатив
- •12.13. Преимущества метода запрос
- •12.13.1. Практическое применение метода запрос
- •12.14. Сравнение трех сппр
- •12.15.Выводы
- •13.Функция полезности.
- •14. Принятие решений в условиях неопределенности.
- •15. Статические модели принятия единичных решений в условиях определенности.
- •15.1. Метод сравнительного учета затрат.
- •15.2. Метод сравнительного учета прибыли.
- •15.3. Метод сравнительного учета рентабельности.
- •15.4. Метод статических амортизационных расчетов.
- •16.Сущность глобального и локального критериев оптимальности.
- •17.Критерии принятия решений.
- •17.1. Критерий Байеса-Лапласа.
- •17.2.Составной критерий Байеса-Лапласа минимаксный.
- •17.3.Критерий Гермейера.
- •17.4. Критерий Сэвиджа.
- •17.5.Критерий Гурвица.
- •17.6.Критерий произведений.
- •18.Принятие коллективных решений.
- •18.1.Плюсы и минусы коллективных решений, современные концепции группового выбора.
- •18.2. Теорема Эрроу о невозможности. Анализ предпосылок теоремы Эрроу.
- •18.3.Правило Кондорсе.
- •18.4.Правило Борда.
- •19.Принятие решений в условиях нечеткой информации.
- •19.1.Зачем нужны нечеткие множества.
- •19.2. Операции над нечеткими множествами.
- •19.3. Задача достижения нечетко определенной цели.
- •19.4.Нечеткие отношения и их свойства.
- •19.4.1.Основные определения.
- •19.4.2.Операции над нечеткими отношениями.
- •19.4.3.Свойства нечетких отношений.
- •19.4.4.Декомпозиция нечетких отношений.
- •19.4.5.Транзитивное замыкание нечетких отношений.
- •19.4.6.Проекции нечетких отношений.
- •20.2.Кооперативные игры.
- •20.3. Дифференциальная игра.
- •20.4. Платежная матрица. Цена игры. Принципы максимина и минимакса.
- •20.5. Решение игры в смешанных стратегиях. Основная теорема теории матричных игр.
- •20.6.Сведение матричной игры к задаче линейного программирования.
- •21. Методы безусловной оптимизации
- •21.1 Классификация методов безусловной оптимизации.
- •21.2 Скорости сходимости.
- •21.3 Методы первого порядка.
- •21.4 Метод наискорейшего спуска
- •21.5 Методы сопряженных градиентов.
- •21.6 Градиентные методы.
- •21.7 Методы второго порядка.
- •21.8 Метод Ньютона и его модификации.
- •21.9 Модифицированный метод Ньютона.
- •21.10 Метод секущих.
- •21.11 Квазиньютоновские методы. Методы переменной метрики.
- •21.12 Конечно-разностная аппроксимация производных. Конечно-разностные методы.
- •21.12.1 Постановка задачи.
- •21.12.2 Общая схема.
- •21.12.3 Устойчивость схемы.
- •21.12.4 Повышение порядка аппроксимации.
- •21.12.5 О решении разностных схем.
- •21.12.6 Нелинейные задачи.
- •21.13 Методы нулевого порядка.
- •21.13.1 Основные определения
- •21.13.2 Общая характеристика методов нулевого порядка
- •21.14 Метод покоординатного спуска
- •21.15 Метод Хука—Дживса
- •21.16 Метод сопряженных направлений.
- •21.17 Методы деформируемых конфигураций.
- •21.18 Симплексные методы.
- •21.19 Комплекс-методы.
- •21.20 Решение задач многокритериальной оптимизации методами прямого поиска.
- •21.20.1 Модифицированный поиск Хука-Дживса
- •21.20.2 Методы случайного поиска
- •22. Задачи с ограничением (условная оптимизация)
- •22.1 Основные подходы к решению задач с ограничениями. Классификация задач и методов.
- •22.2 Метод проекции градиента.
- •22.3 Метод условного градиента.
- •22.4 Методы сведения задач с ограничениями к задачам безусловной оптимизации. Методы возможных направлений
- •22.4.1 Метод Зойтендейка
- •22.4.2 Метод возможных направлений для нелинейных ограничений-неравенств и равенств
- •22.4.3 Модификация метода возможных направлений
- •22.5 Методы штрафных функций
- •22.5.1 Методы внутренних штрафных функций
- •22.5.2 Методы внешних штрафных функций
- •22.6 Комбинированные алгоритмы штрафных функций
- •23. Стохастичесоке программирование
- •23.1 Задачи стохастического программирования. Прямые и непрямые методы.
- •23.2 Прямые методы. Стохастические квазиградиентные методы. Метод проектирования стохастических квазиградиентов.
- •23.3 Прямые методы. Метод стохастической аппроксимации
- •23.4 Прямые методы. Методы случайного поиска. Статистические методы поиска нелинейного программирования
- •23.5 Стохастические разностные методы. Методы конечных разностей в стохастическом программировании.
- •Статистические методы поиска нелинейного программирования
- •23.6 Стохастические задачи с ограничениями вероятностей природы.
- •24. Дискретное программирование
- •24.1 Методы и задачи дискретного программирования. Задачи целочисленного линейного программирования.
- •24.1.1 Задачи с неделимостями
- •24.1.2 Задача о рюкзаке.
- •24.1.3 Экстремальные комбинаторные задачи
- •24.1.4 Задача о коммивояжере.
- •24.1.5 Задача о покрытии.
- •24.1.6 Задачи на несвязных областях.
- •24.1.7 Задачи на невыпуклых областях.
- •24.1.8 Задачи с разрывными целевыми функциями
- •24.1.9 Задачи, сводящиеся к целочисленным
- •24.2 Методы отсечения Гомори.
- •24.3 Метод ветвей и границ.
- •24.4 Метод ветвей и границ для задачи целочисленного программирования
- •24.5 Задача о назначениях.
- •24.6 Венгерский алгоритм.
- •24.6.1 Венгерский метод для задачи о назначениях. Постановка задачи.
- •24.6.2 Описание алгоритма венгерского метода
- •24.6.3 Пример решения задачи о назначених венгерским алгоритмом.
- •24.7 Задачи оптимизации на сетях и графах.
- •Метод итераций по критерию
- •Метод итераций по стратегиям (в пространстве стратегий)
- •Минимизация средних затрат.
- •Пример 24.1
- •Пример 24.2.
- •25. Динамическое программирование
- •25.1 Метод динамического программирования для многошаговых задач принятия решений.
- •25.2 Принцип оптимальности Беллмана
- •25.3 Основное функциональное уравнение.
- •25.4 Вычислительная схема метода динамического программирования.
- •26. Общие положения о системном анализе.
- •27. Задача математического программирования.
- •27.1. Формы записи задач нечеткого математического программирования.
- •27.2. Классификация методов нелинейного математического программирования.
- •28. Линейное программирование.
- •28.1. Общие положения.
- •28.2. Геометрическая интерпретация множества решений системы линейных неравенств с 2 неизвестными.
- •28.3. Постановка задачи линейного программирования и двойственная задача линейного программирования.
- •28.3.1. Стандартная задача лп.
- •28.3.2. Каноническая задача лп.
- •28.3.3. Общая задача лп.
- •28.3.4. Двойственная задача линейного программирования.
- •28.3.5. Теорема двойственности.
- •28.3.6. Теорема равновесия.
- •28.4. Решение систем линейных неравенств. Гиперплоскость и полупространство.
- •28.5. Основные теоремы линейного программирования. Допустимые множества и оптимальные решения задач линейного программирования.
- •28.6. Симплексный метод решения задачи линейного программирования.
- •28.7. Условия существования и свойства оптимальных решений задачи линейного программирования.
- •28.7.1. Оптимальные решения.
- •28.7.2. Необходимые и достаточные условия оптимальности решения.
- •28.7.2.1. Нелинейное программирование без ограничений.
- •28.7.2.2. Нелинейное программирование с ограничениями в виде равенств и неравенств.
- •29. Двойственность в линейном программировании.
- •29.1. Общие положения.
- •29.2. Несимметричные двойственные задачи. Теорема двойственности.
- •29.3. Симметричные двойственные задачи.
- •29.4. Виды математических моделей двойственных задач.
- •29.5. Двойственный симплексный метод.
- •30.1.3. Классические способы отыскания решения экстремальных задач.
- •30.1.4. Условие регулярности.
- •30.1.5. Функция Лагранжа. Условия оптимальности.
- •30.1.6. Теорема Куна-Таккера.
- •30.1.7. Дифференциальные условия Куна-Таккера.
- •30.1.8. Общая схема решения задачи выпуклого программирования.
- •30.2. Выпуклые множества и функции.
- •30.3. Поиск экстремума функции.
- •31. Задача нелинейного программирования при ограничениях в неравенствах.
- •31.1. Теорема Куна-Таккера.
- •31.2. Седловая точка и задача нелинейного программирования.
- •31.3. Применение теоремы Куна-Таккера для задачи выпуклого программирования.
- •Список использованных источников
21.10 Метод секущих.
Метод секущих решения уравнения заключается в приближенной замене функции F в этом уравнении не касательной y = F(xn) + F ′(xn)(x – xn), а секущей гиперплоскостью. Например, в одномерном случае — прямой y = F(xn) + (F(xn) – F(xn–1))(x – xn) /(xn – xn–1) (см. рис. 21.8). Эта замена приводит (в скалярном случае!) к следующему методу решения задачи:
xn+1 = xn – |
xn – xn–1
f ′(xn) – f ′(xn–1) |
f ′(xn), |
который и называется методом секущих. Известно, что для достаточно гладких выпуклых функций порядок сходимости этого метода равен τ, где τ = (√5 + 1)/2 ≈ 1.618 — известная константа (называемая золотым сечением).
Рис.
21.8.
В многомерном случае поступают следующим образом. Пусть xn, xn–1, ..., xn–m — уже вычисленные m + 1 итерации. Для каждой компоненты fj′ функции f ′ (j = 1, ..., m) построим в Rm+1 гиперплоскость Sj, проходящую через m + 1 точку (xi, fj′(xi)) (i = n – m, ..., n) графика этой компоненты. Пусть P - "горизонтальная" проходящая через нуль гиперплоскость в Rm+1: P = {(x, y) ∈ Rm×R; y = 0}. В качестве xn+1 возьмем точку пересечения гиперплоскостей P и Sj:
xn+1 ∈ P ∩ |
( |
m ∩ j = 1 |
Sj |
) |
(в общем положении эта точка единственна).
Несложные рассуждения показывают, что xn+1 можно вычислять так. Пусть α0, ..., αn — решение системы
m ∑ i = 0 |
αif ′(xn–i) = 0, |
m ∑ i = 0 |
αi = 1. |
Тогда
xn+1 = |
m ∑ i = 0 |
αixn–i. |
Затем описанные действия повторяются для точек xn+1, xn, ..., xn–m+1.
Отметим, что поскольку на каждом шаге в системе меняется лишь один столбец, то ее решение на каждом шаге можно обновлять с помощью специальной процедуры, не требующей большого объема вычислений.
Отметим, что метод секущих, в отличие от ранее рассматривавшихся методов, не является одношаговым в том смысле, что для вычисления следующей итерации ему не достаточно информации, полученной на предыдущем шаге — нужна информация, полученная на m + 1 предыдущих шагах. Такие методы называются многошаговыми. В следующем параграфе мы рассмотрим ряд таких методов. Методы же Ньютона и градиентный являются одношаговыми: для вычисления xn+1 требуется знать поведение функции и ее производных только в точке xn.
21.11 Квазиньютоновские методы. Методы переменной метрики.
Введем в пространстве Rm новое скалярное произведение 〈·,·〉 формулой 〈x, y〉 = (Sx, y), где S — самосопряженный положительно определенный оператор на Rm. Оно естественно порождает новую норму |||x||| = 〈x, y〉1/2 и метрику на Rm. Операция взятия градиента дифференцируемой функции, как легко видеть, не инвариантна относительно скалярного произведения (метрики): градиент 〈f 〉′ функции f относительно нового скалярного произведения связан со старым градиентом f ′ соотношением
〈f 〉′(x) = S–1f ′(x).
Соответственно градиентный метод в новой метрике имеет вид
xn+1 = xn – αS–1f ′(xn).
Естественно желание подбирать оператор S с целью ускорения сходимости. Например, если f квадратична: f(x) = (Ax, x)/2 + (b, x) + c, то метод имеет вид
xn+1 = xn – αS–1(Axn + b) = xn –α(S–1Axn + S–1
и является градиентным методом в старой метрике для функции f1 = (S–1Ax, x)/2 + (S–1b, x) + c. При оптимальном выборе шага α его скорость сходимости линейна со знаменателем q = (Λ – λ)/(Λ + λ), где Λ и λ — максимальное и минимальное собственные значения оператора S–1A. Поэтому желательно сделать их разброс минимальным.
В методе оператор S можно менять на каждом шаге с той же целью ускорения сходимости. Такие методы называют иногда методами переменных направлений или переменной метрики.
В общем случае неквадратичной функции f в оптимальным выбором в качестве S будет выбор Sn = f ′′(xn). Тогда превращается просто в метод Ньютона со всеми присущими ему недостатками и достоинствами. С целью уменьшения объема вычислительной работы часто поступают следующим образом. Метод записывают в виде
xn+1 = xn – Gnf ′(xn),
а операторы Gn пытаются вычислять так, чтобы максимально использовать уже полученную информацию при минимальном объеме вычислений и, главное, стремясь, чтобы
Gn – [f ′′(xn)]–1 → Θ при n → ∞.
Методы, получающиеся таким способом часто называют квазиньютоновскими.
Задача. Докажите, что если f ∈ C2, x* - невырожденная точка минимума функции f, а последовательность операторов Gn удовлетворяет условию, то метод локально сверхлинейно сходится.
Построение операторов Gn, как правило, укладывается в следующую общую схему. Для того, чтобы ее оправдать, заметим, что для квадратичной функции f и итераций xn, определяемых формулой
xn+1 = xn – αnGnf ′(xn),
имеет место соотношение
αnsn = A–1φn, т. е. αnsn = [f ′′(xn)]–1φn,
где sn = –Gnf ′(xn), φn = f ′(xn+1) – f ′(xn).
Поэтому представляется естественным, чтобы операторы Gn+1, которые должны аппроксимировать [f ′′(xn)]–1, должны удовлетворять аналогу условия, а именно, т. н. квазиньютоновскому условию:
αnsn = Gn+1φn.
При этом стремятся также к тому, чтобы Gn+1 получалось из Gn в результате коррекций, не требующих большого объема вычислений.
Примером метода, построенного на этом пути, может служить один из наиболее эффективных среди квазиньютоновских методов метод Бройдена — Флетчера — Шенно, задаваемый формулой, в которой
Gn+1 = Gn + [γnsn(sn)* – sn(φn)*Gn – Gnφn(sn)*]/(sn, φn),
где
γn = αn + (Gnφn, φn)/(sn, φn),
а "*" означает операцию транспонирования, в частности, (sn)* — вектор-строка. Шаг αn в этом методе часто выбирают как в методе наискорейшего спуска в направлении sn:
αn = argminα∈[0, ∞) f(xn + αsn).
Для квадратичных функций метод Бройдена — Флетчера — Шенно конечен (выходит на точное решение не более, чем за m шагов). Для неквадратичных же функций он при достаточно общих условиях локально сверхлинейно сходится.
Число различных вариантов и модификаций квазиньютоновских методов весьма велико.
