- •1.Основные понятия системного анализа
- •1.1.Определения и свойства системы
- •1.2.Виды описаний систем
- •1.3.Понятие системного подхода
- •1.4.Аспекты системного подхода
- •2.Классификация систем
- •3.Модели систем
- •4.Постановка задач принятия решений.
- •5.Классификация задач принятия решений.
- •6.Этапы решения задач.
- •6.1.Одношаговые схемы принятия решения
- •6.2.Многошаговые решения
- •7.Экспертные процедуры.
- •7.1. Задачи оценивания.
- •7.2. Алгоритмы экспертизы.
- •7.3 Методы получения экспертной информации.
- •7.4. Шкалы измерений, методы экспертных измерений.
- •7.5.Проверка согласованности мнений экспертов и классификация экспертных мнений.
- •7.6.Нахождение итогового мнения комиссии экспертов.
- •7.6.1.Бинарные отношения и расстояние Кемени.
- •7.6.2.Медиана Кемени и законы больших чисел.
- •7.7. Основные стадии экспертного опроса.
- •7.8. Оценка компетентности экспертов.
- •7.9. Методы обработки экспертной информации.
- •7.9.1. Статистические методы
- •7.9.2. Алгебраический метод.
- •7.9.3 Методы шкалирования.
- •2. Метод троек.
- •8. Формирование исходного множества альтернатив и Морфологический анализ.
- •8.1. Общая характеристика алгоритмов
- •8.2. Алгоритмы формирования има
- •8.3. Морфологический анализ.
- •9.Методы многокритериальной оценки альтернатив.
- •9.1. Различные группы задач принятия решений.
- •9.2.Многокритериальная теория полезности (maut)(Аксиоматические методы многкритериальной оценки).
- •9.2.1. Основные этапы подхода maut
- •9.2.2. Аксиоматическое обоснование
- •9.2.3.Основные теоремы.
- •9.2.4.Построение однокритериальных функций полезности
- •9.2.5. Проверка условий независимости
- •9.3.Проверка условий независимости по полезности
- •9.2.6.Определение весовых коэффициентов (коэффициентов важности) критериев
- •9.2.7.Определение полезности альтернатив
- •9.2.8.Веса критериев
- •9.2.9.Как люди назначают веса критериев
- •9.2.10.Практическое применение
- •9.2.11.Метод smart - простой метод многокритериальной оценки.
- •9.2.12.Первый эвристический метод
- •9.2.13.Выводы
- •9.3. Подход аналитической иерархии.
- •9.3.1.Основные этапы подхода аналитической иерархии
- •9.3.2.Структуризация
- •9.3.3.Попарные сравнения.
- •9.3.4.Определение наилучшей альтернативы
- •9.3.5.Проверка согласованности суждений лпр
- •9.3.6.Система поддержки принятия решений Expert Choice
- •9.3.7.Контрпримеры и противоречия.
- •9.4.Мультипликативный метод аналитической иерархии
- •9.5.Пример практического применения подхода анр
- •9.6.Выводы
- •9.7. Методы electre(Прямые методы многокритериальной оценки альтернатив).
- •9.7.1.Конструктивистский подход
- •9.7.2.Два основных этапа
- •9.7.3.Свойства бинарных отношений
- •9.8.Метод electre I
- •9.8.1.Этап разработки индексов
- •9.8.2.Этап исследования множества альтернатив
- •9.9.Метод electre II
- •9.9.1.Этап разработки индексов
- •9.9.2.Этап исследования множества альтернатив
- •9.10.Метод electre III
- •9.10.1. Этап разработки индексов
- •9.10.2.Этап исследования альтернатив
- •Пример.
- •9.10.3.Пример практического применения метода electre III
- •9.10.4.Некоторые сопоставления
- •9.11.Выводы
- •10.Деревья решений.
- •Рнс. 10.1. Дерево решений
- •11. Методы принятия решений в многокритериальных задачах и постулируемые принципы оптимальности.
- •11.1.Метод главного критерия
- •11.2.Метод доминантной структуры (альтернативы)
- •11.3.Метод "эффективность - стоимость"
- •11.4.Построение множества Парсто (компромиссы Парето)
- •11.5.Отказ от рассмотрения проблемы многокритериального выбора
- •11.6.Методы порогов сравнимости
- •11.7.Компромиссное распределение ресурсов между целями.
- •11.8.Метод деревьев решений
- •11.9.Метод решения многокритериальных задач при вычислимых критериях
- •12. Вербальный анализ решений и диалоговые методы принятия решений.
- •12.1. Особый класс задач принятия решений: неструктуризованные проблемы с качественными переменными
- •12.2. Качественная модель лица, принимающего решения
- •12.2.1. Черты человеческой системы переработки информации
- •12.2.2. Особенности поведения человека при принятии решений
- •12.3. Какими должны быть методы анализа неструктуризованных проблем
- •12.4. Измерения
- •12.4.1. Качественные измерения
- •12.4.2. Сравнительные качественные оценки
- •12.5. Построение решающего правила
- •12.6. Проверка информации лпр на непротиворечивость
- •12.7. Обучающие процедуры
- •12.8. Получение объяснений
- •12.9. Основные характеристики методов вербального анализа решений
- •12.10. Метод запрос (зАмкнутые пРоцедуры у Опорных Ситуаций)
- •12.10.1. Постановка задачи
- •12.10.2. Пример: как оценить проекты?
- •12.11. Выявление предпочтений лпр
- •12.11.1.Единая порядковая шкала для двух критериев
- •12.11.2.Проверка условия независимости для двух критериев
- •12.11.3.Независимость по понижению качества для группы критериев
- •12.11.4.Единая порядковая шкала оценок всех критериев
- •12.11.5.Проверка информации лпр на непротиворечивость
- •12.11.6.Частный случай
- •12.11.7. Психологическая корректность процедуры выявления предпочтений лпр
- •12.12.Сравнение альтернатив.
- •12.12.1.Упорядочение группы заданных альтернатив
- •12.13. Преимущества метода запрос
- •12.13.1. Практическое применение метода запрос
- •12.14. Сравнение трех сппр
- •12.15.Выводы
- •13.Функция полезности.
- •14. Принятие решений в условиях неопределенности.
- •15. Статические модели принятия единичных решений в условиях определенности.
- •15.1. Метод сравнительного учета затрат.
- •15.2. Метод сравнительного учета прибыли.
- •15.3. Метод сравнительного учета рентабельности.
- •15.4. Метод статических амортизационных расчетов.
- •16.Сущность глобального и локального критериев оптимальности.
- •17.Критерии принятия решений.
- •17.1. Критерий Байеса-Лапласа.
- •17.2.Составной критерий Байеса-Лапласа минимаксный.
- •17.3.Критерий Гермейера.
- •17.4. Критерий Сэвиджа.
- •17.5.Критерий Гурвица.
- •17.6.Критерий произведений.
- •18.Принятие коллективных решений.
- •18.1.Плюсы и минусы коллективных решений, современные концепции группового выбора.
- •18.2. Теорема Эрроу о невозможности. Анализ предпосылок теоремы Эрроу.
- •18.3.Правило Кондорсе.
- •18.4.Правило Борда.
- •19.Принятие решений в условиях нечеткой информации.
- •19.1.Зачем нужны нечеткие множества.
- •19.2. Операции над нечеткими множествами.
- •19.3. Задача достижения нечетко определенной цели.
- •19.4.Нечеткие отношения и их свойства.
- •19.4.1.Основные определения.
- •19.4.2.Операции над нечеткими отношениями.
- •19.4.3.Свойства нечетких отношений.
- •19.4.4.Декомпозиция нечетких отношений.
- •19.4.5.Транзитивное замыкание нечетких отношений.
- •19.4.6.Проекции нечетких отношений.
- •20.2.Кооперативные игры.
- •20.3. Дифференциальная игра.
- •20.4. Платежная матрица. Цена игры. Принципы максимина и минимакса.
- •20.5. Решение игры в смешанных стратегиях. Основная теорема теории матричных игр.
- •20.6.Сведение матричной игры к задаче линейного программирования.
- •21. Методы безусловной оптимизации
- •21.1 Классификация методов безусловной оптимизации.
- •21.2 Скорости сходимости.
- •21.3 Методы первого порядка.
- •21.4 Метод наискорейшего спуска
- •21.5 Методы сопряженных градиентов.
- •21.6 Градиентные методы.
- •21.7 Методы второго порядка.
- •21.8 Метод Ньютона и его модификации.
- •21.9 Модифицированный метод Ньютона.
- •21.10 Метод секущих.
- •21.11 Квазиньютоновские методы. Методы переменной метрики.
- •21.12 Конечно-разностная аппроксимация производных. Конечно-разностные методы.
- •21.12.1 Постановка задачи.
- •21.12.2 Общая схема.
- •21.12.3 Устойчивость схемы.
- •21.12.4 Повышение порядка аппроксимации.
- •21.12.5 О решении разностных схем.
- •21.12.6 Нелинейные задачи.
- •21.13 Методы нулевого порядка.
- •21.13.1 Основные определения
- •21.13.2 Общая характеристика методов нулевого порядка
- •21.14 Метод покоординатного спуска
- •21.15 Метод Хука—Дживса
- •21.16 Метод сопряженных направлений.
- •21.17 Методы деформируемых конфигураций.
- •21.18 Симплексные методы.
- •21.19 Комплекс-методы.
- •21.20 Решение задач многокритериальной оптимизации методами прямого поиска.
- •21.20.1 Модифицированный поиск Хука-Дживса
- •21.20.2 Методы случайного поиска
- •22. Задачи с ограничением (условная оптимизация)
- •22.1 Основные подходы к решению задач с ограничениями. Классификация задач и методов.
- •22.2 Метод проекции градиента.
- •22.3 Метод условного градиента.
- •22.4 Методы сведения задач с ограничениями к задачам безусловной оптимизации. Методы возможных направлений
- •22.4.1 Метод Зойтендейка
- •22.4.2 Метод возможных направлений для нелинейных ограничений-неравенств и равенств
- •22.4.3 Модификация метода возможных направлений
- •22.5 Методы штрафных функций
- •22.5.1 Методы внутренних штрафных функций
- •22.5.2 Методы внешних штрафных функций
- •22.6 Комбинированные алгоритмы штрафных функций
- •23. Стохастичесоке программирование
- •23.1 Задачи стохастического программирования. Прямые и непрямые методы.
- •23.2 Прямые методы. Стохастические квазиградиентные методы. Метод проектирования стохастических квазиградиентов.
- •23.3 Прямые методы. Метод стохастической аппроксимации
- •23.4 Прямые методы. Методы случайного поиска. Статистические методы поиска нелинейного программирования
- •23.5 Стохастические разностные методы. Методы конечных разностей в стохастическом программировании.
- •Статистические методы поиска нелинейного программирования
- •23.6 Стохастические задачи с ограничениями вероятностей природы.
- •24. Дискретное программирование
- •24.1 Методы и задачи дискретного программирования. Задачи целочисленного линейного программирования.
- •24.1.1 Задачи с неделимостями
- •24.1.2 Задача о рюкзаке.
- •24.1.3 Экстремальные комбинаторные задачи
- •24.1.4 Задача о коммивояжере.
- •24.1.5 Задача о покрытии.
- •24.1.6 Задачи на несвязных областях.
- •24.1.7 Задачи на невыпуклых областях.
- •24.1.8 Задачи с разрывными целевыми функциями
- •24.1.9 Задачи, сводящиеся к целочисленным
- •24.2 Методы отсечения Гомори.
- •24.3 Метод ветвей и границ.
- •24.4 Метод ветвей и границ для задачи целочисленного программирования
- •24.5 Задача о назначениях.
- •24.6 Венгерский алгоритм.
- •24.6.1 Венгерский метод для задачи о назначениях. Постановка задачи.
- •24.6.2 Описание алгоритма венгерского метода
- •24.6.3 Пример решения задачи о назначених венгерским алгоритмом.
- •24.7 Задачи оптимизации на сетях и графах.
- •Метод итераций по критерию
- •Метод итераций по стратегиям (в пространстве стратегий)
- •Минимизация средних затрат.
- •Пример 24.1
- •Пример 24.2.
- •25. Динамическое программирование
- •25.1 Метод динамического программирования для многошаговых задач принятия решений.
- •25.2 Принцип оптимальности Беллмана
- •25.3 Основное функциональное уравнение.
- •25.4 Вычислительная схема метода динамического программирования.
- •26. Общие положения о системном анализе.
- •27. Задача математического программирования.
- •27.1. Формы записи задач нечеткого математического программирования.
- •27.2. Классификация методов нелинейного математического программирования.
- •28. Линейное программирование.
- •28.1. Общие положения.
- •28.2. Геометрическая интерпретация множества решений системы линейных неравенств с 2 неизвестными.
- •28.3. Постановка задачи линейного программирования и двойственная задача линейного программирования.
- •28.3.1. Стандартная задача лп.
- •28.3.2. Каноническая задача лп.
- •28.3.3. Общая задача лп.
- •28.3.4. Двойственная задача линейного программирования.
- •28.3.5. Теорема двойственности.
- •28.3.6. Теорема равновесия.
- •28.4. Решение систем линейных неравенств. Гиперплоскость и полупространство.
- •28.5. Основные теоремы линейного программирования. Допустимые множества и оптимальные решения задач линейного программирования.
- •28.6. Симплексный метод решения задачи линейного программирования.
- •28.7. Условия существования и свойства оптимальных решений задачи линейного программирования.
- •28.7.1. Оптимальные решения.
- •28.7.2. Необходимые и достаточные условия оптимальности решения.
- •28.7.2.1. Нелинейное программирование без ограничений.
- •28.7.2.2. Нелинейное программирование с ограничениями в виде равенств и неравенств.
- •29. Двойственность в линейном программировании.
- •29.1. Общие положения.
- •29.2. Несимметричные двойственные задачи. Теорема двойственности.
- •29.3. Симметричные двойственные задачи.
- •29.4. Виды математических моделей двойственных задач.
- •29.5. Двойственный симплексный метод.
- •30.1.3. Классические способы отыскания решения экстремальных задач.
- •30.1.4. Условие регулярности.
- •30.1.5. Функция Лагранжа. Условия оптимальности.
- •30.1.6. Теорема Куна-Таккера.
- •30.1.7. Дифференциальные условия Куна-Таккера.
- •30.1.8. Общая схема решения задачи выпуклого программирования.
- •30.2. Выпуклые множества и функции.
- •30.3. Поиск экстремума функции.
- •31. Задача нелинейного программирования при ограничениях в неравенствах.
- •31.1. Теорема Куна-Таккера.
- •31.2. Седловая точка и задача нелинейного программирования.
- •31.3. Применение теоремы Куна-Таккера для задачи выпуклого программирования.
- •Список использованных источников
21. Методы безусловной оптимизации
21.1 Классификация методов безусловной оптимизации.
При решении конкретной задачи оптимизации исследователь прежде всего должен выбрать математический метод, который приводил бы к конечным результатам с наименьшими затратами на вычисления или же давал возможность получить наибольший объем информации об искомом решении. Выбор того или иного метода в значительной степени определяется постановкой оптимальной задачи, а также используемой математической моделью объекта оптимизации.
Все известные численные методы отыскания экстремума нелинейных функций в зависимости от используемой информации для получения следующей точки можно разделить на три основные группы.
Прямые методы, использующие только текущие значения оптимизируемой функции.
Методы первого порядка, использующие дополнительно и значения первой производной функции.
Методы второго порядка, требующие знания и второй производной оптимизируемой функции.
21.2 Скорости сходимости.
Сходимость, математическое понятие, означающее, что некоторая переменная величина имеет предел. В этом смысле говорят о С. последовательности, С. ряда, С. бесконечного произведения, С. непрерывной дроби, С. интеграла и т. д. Понятие С. возникает, например, когда при изучении того или иного математического объекта строится последовательность более простых в известном смысле объектов, приближающихся к данному, то есть имеющих его своим пределом (так, для вычисления длины окружности используется последовательность длин периметров правильных многоугольников, вписанных в окружность; для вычисления значений функций используются последовательности частичных сумм рядов, которыми представляются данные функции, и т. п.).
С. последовательности
{an}, n = 1, 2,..., означает существование у
неё конечного предела
;
С. ряда - конечного предела
(называемого суммой ряда) у последовательности
его частичных сумм
;
С. бесконечного произведения b1 b2... bn -
конечного предела, не равного нулю, у
последовательности конечных произведений
pn = b1b2... bn, n = 1, 2,...;с. интеграла
от функции f (x), интегрируемой по любому
конечному отрезку [а, b],- конечного
предела у интегралов при b ? +?, называется
несобственным интегралом
При практических
вычислениях в целях экономии числа
операций (а следовательно, экономии
времени и уменьшения накопления ошибок)
целесообразно из имеющихся рядов выбрать
ряд, который сходится "более быстро".
Если даны два сходящихся ряда
и
,
и ,
.
- их остатки, то 1-й ряд называется
сходящимся быстрее 2-го ряда, если
Например, ряд
сходится быстрее ряда
Используются и другие понятия "более быстро" сходящихся рядов. Существуют различные методы улучшения С. рядов, то есть методы, позволяющие преобразовать данный ряд в "более быстро" сходящийся. Аналогично случаю рядов вводится понятие "более быстрой" С. и для несобственных интегралов, для которых также имеются способы улучшения их С.
21.3 Методы первого порядка.
Минимизация функций многих переменных. Основные положения
Градиентом дифференцируемой функции f(x) в точке х[0] называется n-мерный вектор f(x[0]), компоненты которого являются частными производными функции f(х), вычисленными в точке х[0], т. е.
f'(x[0]) = (дf(х[0])/дх1, …, дf(х[0])/дхn)T.
Этот вектор перпендикулярен к плоскости, проведенной через точку х[0] , и касательной к поверхности уровня функции f(x), проходящей через точку х[0]. В каждой точке такой поверхности функция f(x) принимает одинаковое значение. Приравнивая функцию различным постоянным величинам С0, С1, ... , получим серию поверхностей, характеризующих ее топологию (Рис. 21.1).
Рис. 21.1. Градиент
Вектор-градиент направлен в сторону наискорейшего возрастания функции в данной точке. Вектор, противоположный градиенту (-f’(х[0])), называется антиградиентом и направлен в сторону наискорейшего убывания функции. В точке минимума градиент функции равен нулю. На свойствах градиента основаны методы первого порядка, называемые также градиентным и методами минимизации. Использование этих методов в общем случае позволяет определить точку локального минимума функции.
Очевидно, что если нет дополнительной информации, то из начальной точки х[0] разумно перейти в точку х [1], лежащую в направлении антиградиента - наискорейшего убывания функции. Выбирая в качестве направления спуска р[k] антиградиент -f’(х[k]) в точке х[k], получаем итерационный процесс вида
х[k+1] = x[k]-akf'(x[k]), аk > 0; k=0, 1, 2, ...
В координатной форме этот процесс записывается следующим образом:
xi[k+1]=хi[k]
– a k
f(x[k])/
xi
i = 1, ..., n; k= 0, 1, 2,...
В качестве критерия останова итерационного процесса используют либо выполнение условия малости приращения аргумента || x[k+l] - x[k] || <= e, либо выполнение условия малости градиента
|| f’(x[k+l]) || <= g,
Здесь e и g - заданные малые величины.
Возможен и комбинированный критерий, состоящий в одновременном выполнении указанных условий. Градиентные методы отличаются друг от друга способами выбора величины шага аk.
При методе с постоянным шагом для всех итераций выбирается некоторая постоянная величина шага. Достаточно малый шаг аk обеспечит убывание функции, т. е. выполнение неравенства
f(х[k+1]) = f(x[k] – akf’(x[k])) < f(x[k]).
Однако это может привести к необходимости проводить неприемлемо большое количество итераций для достижения точки минимума. С другой стороны, слишком большой шаг может вызвать неожиданный рост функции либо привести к колебаниям около точки минимума (зацикливанию). Из-за сложности получения необходимой информации для выбора величины шага методы с постоянным шагом применяются на практике редко.
Более экономичны в смысле количества итераций и надежности градиентные методы с переменным шагом, когда в зависимости от результатов вычислений величина шага некоторым образом меняется. Рассмотрим применяемые на практике варианты таких методов.
