- •1.Основные понятия системного анализа
- •1.1.Определения и свойства системы
- •1.2.Виды описаний систем
- •1.3.Понятие системного подхода
- •1.4.Аспекты системного подхода
- •2.Классификация систем
- •3.Модели систем
- •4.Постановка задач принятия решений.
- •5.Классификация задач принятия решений.
- •6.Этапы решения задач.
- •6.1.Одношаговые схемы принятия решения
- •6.2.Многошаговые решения
- •7.Экспертные процедуры.
- •7.1. Задачи оценивания.
- •7.2. Алгоритмы экспертизы.
- •7.3 Методы получения экспертной информации.
- •7.4. Шкалы измерений, методы экспертных измерений.
- •7.5.Проверка согласованности мнений экспертов и классификация экспертных мнений.
- •7.6.Нахождение итогового мнения комиссии экспертов.
- •7.6.1.Бинарные отношения и расстояние Кемени.
- •7.6.2.Медиана Кемени и законы больших чисел.
- •7.7. Основные стадии экспертного опроса.
- •7.8. Оценка компетентности экспертов.
- •7.9. Методы обработки экспертной информации.
- •7.9.1. Статистические методы
- •7.9.2. Алгебраический метод.
- •7.9.3 Методы шкалирования.
- •2. Метод троек.
- •8. Формирование исходного множества альтернатив и Морфологический анализ.
- •8.1. Общая характеристика алгоритмов
- •8.2. Алгоритмы формирования има
- •8.3. Морфологический анализ.
- •9.Методы многокритериальной оценки альтернатив.
- •9.1. Различные группы задач принятия решений.
- •9.2.Многокритериальная теория полезности (maut)(Аксиоматические методы многкритериальной оценки).
- •9.2.1. Основные этапы подхода maut
- •9.2.2. Аксиоматическое обоснование
- •9.2.3.Основные теоремы.
- •9.2.4.Построение однокритериальных функций полезности
- •9.2.5. Проверка условий независимости
- •9.3.Проверка условий независимости по полезности
- •9.2.6.Определение весовых коэффициентов (коэффициентов важности) критериев
- •9.2.7.Определение полезности альтернатив
- •9.2.8.Веса критериев
- •9.2.9.Как люди назначают веса критериев
- •9.2.10.Практическое применение
- •9.2.11.Метод smart - простой метод многокритериальной оценки.
- •9.2.12.Первый эвристический метод
- •9.2.13.Выводы
- •9.3. Подход аналитической иерархии.
- •9.3.1.Основные этапы подхода аналитической иерархии
- •9.3.2.Структуризация
- •9.3.3.Попарные сравнения.
- •9.3.4.Определение наилучшей альтернативы
- •9.3.5.Проверка согласованности суждений лпр
- •9.3.6.Система поддержки принятия решений Expert Choice
- •9.3.7.Контрпримеры и противоречия.
- •9.4.Мультипликативный метод аналитической иерархии
- •9.5.Пример практического применения подхода анр
- •9.6.Выводы
- •9.7. Методы electre(Прямые методы многокритериальной оценки альтернатив).
- •9.7.1.Конструктивистский подход
- •9.7.2.Два основных этапа
- •9.7.3.Свойства бинарных отношений
- •9.8.Метод electre I
- •9.8.1.Этап разработки индексов
- •9.8.2.Этап исследования множества альтернатив
- •9.9.Метод electre II
- •9.9.1.Этап разработки индексов
- •9.9.2.Этап исследования множества альтернатив
- •9.10.Метод electre III
- •9.10.1. Этап разработки индексов
- •9.10.2.Этап исследования альтернатив
- •Пример.
- •9.10.3.Пример практического применения метода electre III
- •9.10.4.Некоторые сопоставления
- •9.11.Выводы
- •10.Деревья решений.
- •Рнс. 10.1. Дерево решений
- •11. Методы принятия решений в многокритериальных задачах и постулируемые принципы оптимальности.
- •11.1.Метод главного критерия
- •11.2.Метод доминантной структуры (альтернативы)
- •11.3.Метод "эффективность - стоимость"
- •11.4.Построение множества Парсто (компромиссы Парето)
- •11.5.Отказ от рассмотрения проблемы многокритериального выбора
- •11.6.Методы порогов сравнимости
- •11.7.Компромиссное распределение ресурсов между целями.
- •11.8.Метод деревьев решений
- •11.9.Метод решения многокритериальных задач при вычислимых критериях
- •12. Вербальный анализ решений и диалоговые методы принятия решений.
- •12.1. Особый класс задач принятия решений: неструктуризованные проблемы с качественными переменными
- •12.2. Качественная модель лица, принимающего решения
- •12.2.1. Черты человеческой системы переработки информации
- •12.2.2. Особенности поведения человека при принятии решений
- •12.3. Какими должны быть методы анализа неструктуризованных проблем
- •12.4. Измерения
- •12.4.1. Качественные измерения
- •12.4.2. Сравнительные качественные оценки
- •12.5. Построение решающего правила
- •12.6. Проверка информации лпр на непротиворечивость
- •12.7. Обучающие процедуры
- •12.8. Получение объяснений
- •12.9. Основные характеристики методов вербального анализа решений
- •12.10. Метод запрос (зАмкнутые пРоцедуры у Опорных Ситуаций)
- •12.10.1. Постановка задачи
- •12.10.2. Пример: как оценить проекты?
- •12.11. Выявление предпочтений лпр
- •12.11.1.Единая порядковая шкала для двух критериев
- •12.11.2.Проверка условия независимости для двух критериев
- •12.11.3.Независимость по понижению качества для группы критериев
- •12.11.4.Единая порядковая шкала оценок всех критериев
- •12.11.5.Проверка информации лпр на непротиворечивость
- •12.11.6.Частный случай
- •12.11.7. Психологическая корректность процедуры выявления предпочтений лпр
- •12.12.Сравнение альтернатив.
- •12.12.1.Упорядочение группы заданных альтернатив
- •12.13. Преимущества метода запрос
- •12.13.1. Практическое применение метода запрос
- •12.14. Сравнение трех сппр
- •12.15.Выводы
- •13.Функция полезности.
- •14. Принятие решений в условиях неопределенности.
- •15. Статические модели принятия единичных решений в условиях определенности.
- •15.1. Метод сравнительного учета затрат.
- •15.2. Метод сравнительного учета прибыли.
- •15.3. Метод сравнительного учета рентабельности.
- •15.4. Метод статических амортизационных расчетов.
- •16.Сущность глобального и локального критериев оптимальности.
- •17.Критерии принятия решений.
- •17.1. Критерий Байеса-Лапласа.
- •17.2.Составной критерий Байеса-Лапласа минимаксный.
- •17.3.Критерий Гермейера.
- •17.4. Критерий Сэвиджа.
- •17.5.Критерий Гурвица.
- •17.6.Критерий произведений.
- •18.Принятие коллективных решений.
- •18.1.Плюсы и минусы коллективных решений, современные концепции группового выбора.
- •18.2. Теорема Эрроу о невозможности. Анализ предпосылок теоремы Эрроу.
- •18.3.Правило Кондорсе.
- •18.4.Правило Борда.
- •19.Принятие решений в условиях нечеткой информации.
- •19.1.Зачем нужны нечеткие множества.
- •19.2. Операции над нечеткими множествами.
- •19.3. Задача достижения нечетко определенной цели.
- •19.4.Нечеткие отношения и их свойства.
- •19.4.1.Основные определения.
- •19.4.2.Операции над нечеткими отношениями.
- •19.4.3.Свойства нечетких отношений.
- •19.4.4.Декомпозиция нечетких отношений.
- •19.4.5.Транзитивное замыкание нечетких отношений.
- •19.4.6.Проекции нечетких отношений.
- •20.2.Кооперативные игры.
- •20.3. Дифференциальная игра.
- •20.4. Платежная матрица. Цена игры. Принципы максимина и минимакса.
- •20.5. Решение игры в смешанных стратегиях. Основная теорема теории матричных игр.
- •20.6.Сведение матричной игры к задаче линейного программирования.
- •21. Методы безусловной оптимизации
- •21.1 Классификация методов безусловной оптимизации.
- •21.2 Скорости сходимости.
- •21.3 Методы первого порядка.
- •21.4 Метод наискорейшего спуска
- •21.5 Методы сопряженных градиентов.
- •21.6 Градиентные методы.
- •21.7 Методы второго порядка.
- •21.8 Метод Ньютона и его модификации.
- •21.9 Модифицированный метод Ньютона.
- •21.10 Метод секущих.
- •21.11 Квазиньютоновские методы. Методы переменной метрики.
- •21.12 Конечно-разностная аппроксимация производных. Конечно-разностные методы.
- •21.12.1 Постановка задачи.
- •21.12.2 Общая схема.
- •21.12.3 Устойчивость схемы.
- •21.12.4 Повышение порядка аппроксимации.
- •21.12.5 О решении разностных схем.
- •21.12.6 Нелинейные задачи.
- •21.13 Методы нулевого порядка.
- •21.13.1 Основные определения
- •21.13.2 Общая характеристика методов нулевого порядка
- •21.14 Метод покоординатного спуска
- •21.15 Метод Хука—Дживса
- •21.16 Метод сопряженных направлений.
- •21.17 Методы деформируемых конфигураций.
- •21.18 Симплексные методы.
- •21.19 Комплекс-методы.
- •21.20 Решение задач многокритериальной оптимизации методами прямого поиска.
- •21.20.1 Модифицированный поиск Хука-Дживса
- •21.20.2 Методы случайного поиска
- •22. Задачи с ограничением (условная оптимизация)
- •22.1 Основные подходы к решению задач с ограничениями. Классификация задач и методов.
- •22.2 Метод проекции градиента.
- •22.3 Метод условного градиента.
- •22.4 Методы сведения задач с ограничениями к задачам безусловной оптимизации. Методы возможных направлений
- •22.4.1 Метод Зойтендейка
- •22.4.2 Метод возможных направлений для нелинейных ограничений-неравенств и равенств
- •22.4.3 Модификация метода возможных направлений
- •22.5 Методы штрафных функций
- •22.5.1 Методы внутренних штрафных функций
- •22.5.2 Методы внешних штрафных функций
- •22.6 Комбинированные алгоритмы штрафных функций
- •23. Стохастичесоке программирование
- •23.1 Задачи стохастического программирования. Прямые и непрямые методы.
- •23.2 Прямые методы. Стохастические квазиградиентные методы. Метод проектирования стохастических квазиградиентов.
- •23.3 Прямые методы. Метод стохастической аппроксимации
- •23.4 Прямые методы. Методы случайного поиска. Статистические методы поиска нелинейного программирования
- •23.5 Стохастические разностные методы. Методы конечных разностей в стохастическом программировании.
- •Статистические методы поиска нелинейного программирования
- •23.6 Стохастические задачи с ограничениями вероятностей природы.
- •24. Дискретное программирование
- •24.1 Методы и задачи дискретного программирования. Задачи целочисленного линейного программирования.
- •24.1.1 Задачи с неделимостями
- •24.1.2 Задача о рюкзаке.
- •24.1.3 Экстремальные комбинаторные задачи
- •24.1.4 Задача о коммивояжере.
- •24.1.5 Задача о покрытии.
- •24.1.6 Задачи на несвязных областях.
- •24.1.7 Задачи на невыпуклых областях.
- •24.1.8 Задачи с разрывными целевыми функциями
- •24.1.9 Задачи, сводящиеся к целочисленным
- •24.2 Методы отсечения Гомори.
- •24.3 Метод ветвей и границ.
- •24.4 Метод ветвей и границ для задачи целочисленного программирования
- •24.5 Задача о назначениях.
- •24.6 Венгерский алгоритм.
- •24.6.1 Венгерский метод для задачи о назначениях. Постановка задачи.
- •24.6.2 Описание алгоритма венгерского метода
- •24.6.3 Пример решения задачи о назначених венгерским алгоритмом.
- •24.7 Задачи оптимизации на сетях и графах.
- •Метод итераций по критерию
- •Метод итераций по стратегиям (в пространстве стратегий)
- •Минимизация средних затрат.
- •Пример 24.1
- •Пример 24.2.
- •25. Динамическое программирование
- •25.1 Метод динамического программирования для многошаговых задач принятия решений.
- •25.2 Принцип оптимальности Беллмана
- •25.3 Основное функциональное уравнение.
- •25.4 Вычислительная схема метода динамического программирования.
- •26. Общие положения о системном анализе.
- •27. Задача математического программирования.
- •27.1. Формы записи задач нечеткого математического программирования.
- •27.2. Классификация методов нелинейного математического программирования.
- •28. Линейное программирование.
- •28.1. Общие положения.
- •28.2. Геометрическая интерпретация множества решений системы линейных неравенств с 2 неизвестными.
- •28.3. Постановка задачи линейного программирования и двойственная задача линейного программирования.
- •28.3.1. Стандартная задача лп.
- •28.3.2. Каноническая задача лп.
- •28.3.3. Общая задача лп.
- •28.3.4. Двойственная задача линейного программирования.
- •28.3.5. Теорема двойственности.
- •28.3.6. Теорема равновесия.
- •28.4. Решение систем линейных неравенств. Гиперплоскость и полупространство.
- •28.5. Основные теоремы линейного программирования. Допустимые множества и оптимальные решения задач линейного программирования.
- •28.6. Симплексный метод решения задачи линейного программирования.
- •28.7. Условия существования и свойства оптимальных решений задачи линейного программирования.
- •28.7.1. Оптимальные решения.
- •28.7.2. Необходимые и достаточные условия оптимальности решения.
- •28.7.2.1. Нелинейное программирование без ограничений.
- •28.7.2.2. Нелинейное программирование с ограничениями в виде равенств и неравенств.
- •29. Двойственность в линейном программировании.
- •29.1. Общие положения.
- •29.2. Несимметричные двойственные задачи. Теорема двойственности.
- •29.3. Симметричные двойственные задачи.
- •29.4. Виды математических моделей двойственных задач.
- •29.5. Двойственный симплексный метод.
- •30.1.3. Классические способы отыскания решения экстремальных задач.
- •30.1.4. Условие регулярности.
- •30.1.5. Функция Лагранжа. Условия оптимальности.
- •30.1.6. Теорема Куна-Таккера.
- •30.1.7. Дифференциальные условия Куна-Таккера.
- •30.1.8. Общая схема решения задачи выпуклого программирования.
- •30.2. Выпуклые множества и функции.
- •30.3. Поиск экстремума функции.
- •31. Задача нелинейного программирования при ограничениях в неравенствах.
- •31.1. Теорема Куна-Таккера.
- •31.2. Седловая точка и задача нелинейного программирования.
- •31.3. Применение теоремы Куна-Таккера для задачи выпуклого программирования.
- •Список использованных источников
20.3. Дифференциальная игра.
Дифференциальная игра - это динамическая система, управляемая двумя противниками, интересы которых противоположны. Примеры задач, приводящих к дифференциальным играм: посадка самолета в условиях ветрового возмущения; преследование одной управляемой ракеты другой.
Основной элемент решения - функция цены - вычисляется как набор большого числа (100-500) множеств уровня - "трубок" (1 трубка - 500 000 точек).
20.4. Платежная матрица. Цена игры. Принципы максимина и минимакса.
Пусть в игре участвуют два игрока А и В. Игра называется игрой с нулевой суммой (матричной игрой), если выигрыш игрока А в точности равен проигрышу игрока В (или наоборот). Игроки А и В производят ряд последовательных ходов, т.е. производят ряд последовательных действий, предусмотренных правилами игры.
Стратегия игрока – это совокупность правил, определяющих выбор варианта действий при каждом ходе в зависимости от ситуации, которая сложилась в ходе игры.
Теория игр дает указания игрокам при выборе ходов, т.е. рекомендует им лучшие стратегии.
Задание пары стратегий игроков А и В в игре двух лиц полностью определяет ее исход, т.е. выигрыш одного игрока и проигрыш другого. Игра называется конечной, если у каждого игрока имеется лишь конечное число стратегий. Если таких стратегий бесконечно много (пусть даже только у одного игрока), то игра называется бесконечной.
Рассмотрим конечную игру, в которой игрок А имеет m стратегий (А1, А2, …, Аm), а игрок В – n стратегий (В1, В2, …, Вn). Такая игра называется игрой m×n. Если игроки А и В используют только личные ходы, то выбор стратегий А и В однозначно определяет исход игры aij, т.е. число, характеризующее выигрыш игрока А и проигрыш игрока В. Причем aij может быть и положительным, и отрицательным. Будем считать, что при aij>0 игрок А выигрывает, а игрок В проигрывает величину aij. Если aij<0, то, наоборот, выигрывает игрок В и проигрывает игрок А. В этом случае вместо проигрыша часто говорят об отрицательном выигрыше игрока А.
Если в игре используются случайные ходы, то выигрыш при двух стратегиях Ai и Bj является случайным. В этом случае за оценку ожидаемого выигрыша берется его математическое ожидание.
Предположим, что нам известны все значения aij в игре (m×n). Эти значения удобно записать в виде таблицы платежной матрицы (табл. 20.1), где строки соответствуют стратегиям Ai, а столбцы – стратегиям Bj.
A B |
В1 |
В2 |
… |
Bj |
… |
Bn |
βj |
A1 |
a11 |
a12 |
… |
a1j |
… |
a1n |
|
A2 |
a21 |
a22 |
… |
a2j |
… |
a2n |
|
… |
… |
… |
… |
… |
… |
… |
|
Ai |
ai1 |
ai2 |
… |
aij |
… |
ain |
|
… |
… |
… |
… |
… |
… |
… |
|
Am |
am1 |
am2 |
… |
amj |
… |
amn |
|
|
|
|
|
|
|
|
|
Таблица 20.1.Платежная матрица.
Подход к игре, когда для выигрыша приходится использовать случайный выбор стратегий, называется подходом с использованием смешанных стратегий. Итак, смешанные стратегии получаются путем случайного чередования отдельных чистых стратегий при образовании смешанных стратегий.
Рассмотрим платежную
матрицу общего вида (табл. 10.1) с тем,
чтобы обобщить правила нахождения
решения игры. Предположим сначала, что
игра составлена таким образом, что
существует ее решение в чистых стратегиях.
Сначала определим наилучшую из стратегий
игрока А, т.е. наилучшую из А1,
А2,
…, Аm
с учетом того, что на любую стратегию
Ai
игрок B
ответит стратегией Bj,
для которой выигрыш игрока А
окажется минимальным. Чтобы найти эту
стратегию Bj,
надо в строке платежной матрицы,
соответствующей стратегии Ai
(строке с номером i), найти минимальное
из чисел aij.
Обозначим его
,
т.е.
где минимум определяется путем перебора
всех номеров столбцов. При изменении
стратегий игрока А
соответствующее каждой из этих стратегий
число
тоже будет меняться. Естественно, что
игроку А
выгоднее всего остановиться на такой
стратегии Ai,
для которой значение
будет максимальным. Обозначим это
максимальное значение
,
т.е.
или, учитывая выражение для
,
получим
Величину принято называть нижней ценой игры или максиминным выигрышем (сокращенно максимином). Стратегию игрока А, которой соответствует максимин , назовем максиминной стратегией.
Если игрок А будет придерживаться максиминной стратегии, то ему при любом поведении игрока В гарантирован выигрыш, во всяком случае не меньше, чем . Поэтому величину называют нижней ценой игры, т.е. это тот гарантированный минимум, который получит игрок А в данной игре.
Аналогично можно
определить наилучшую из стратегий
игрока В.
Он стремится обратить выигрыш игрока
А
в минимум. Для этого игрок В
старается
для каждой своей стратегии Bj
получить максимальное значение выигрыша
при любой стратегии игрока А,
т.е. он ищет значение βj
такое, что
Однако игрок В
не может рассчитывать на то, что игрок
А
позволит ему получить любой из выигрышей
βj.
Единственно, на что может рассчитывать
игрок В, так это на то, что получит
выигрыш, который будет не меньше, чем
величина β,
определяемая выражением
Эта величина β называется верхней ценой игры, или минимаксным выигрышем (минимаксом). Соответствующая минимаксу стратегия игрока В называется минимаксной стратегией. Это наиболее осторожная стратегия игрока В, обеспечивающая ему в любом случае проигрыш не больше β и, соответственно, выигрыш игроку А также не больше β.
В теории игр принцип осторожности, рекомендующий игрокам придерживаться максиминной и минимаксной стратегии, называется принципом минимакса. Он вытекает из предположения об осторожности игроков или из желания разрешить конфликтную ситуацию наилучшим для всех участвующих в ней сторон образом.
Если верхняя цена
игры совпадает с нижней ценой, то их
общее значение
называется чистой ценой игры. Минимаксные
стратегии, соответствующие чистой цене
игры, являются оптимальными стратегиями,
а их совокупность – оптимальным решением.
Пара чистых стратегий дает оптимальное
решение тогда и только тогда, когда
соответствующий ей элемент aij
является
одновременно наибольшим в своем столбце
и наименьшим в своей строке. В этом
случае говорят, что игра имеет седловую
точку.
