- •1.Основные понятия системного анализа
- •1.1.Определения и свойства системы
- •1.2.Виды описаний систем
- •1.3.Понятие системного подхода
- •1.4.Аспекты системного подхода
- •2.Классификация систем
- •3.Модели систем
- •4.Постановка задач принятия решений.
- •5.Классификация задач принятия решений.
- •6.Этапы решения задач.
- •6.1.Одношаговые схемы принятия решения
- •6.2.Многошаговые решения
- •7.Экспертные процедуры.
- •7.1. Задачи оценивания.
- •7.2. Алгоритмы экспертизы.
- •7.3 Методы получения экспертной информации.
- •7.4. Шкалы измерений, методы экспертных измерений.
- •7.5.Проверка согласованности мнений экспертов и классификация экспертных мнений.
- •7.6.Нахождение итогового мнения комиссии экспертов.
- •7.6.1.Бинарные отношения и расстояние Кемени.
- •7.6.2.Медиана Кемени и законы больших чисел.
- •7.7. Основные стадии экспертного опроса.
- •7.8. Оценка компетентности экспертов.
- •7.9. Методы обработки экспертной информации.
- •7.9.1. Статистические методы
- •7.9.2. Алгебраический метод.
- •7.9.3 Методы шкалирования.
- •2. Метод троек.
- •8. Формирование исходного множества альтернатив и Морфологический анализ.
- •8.1. Общая характеристика алгоритмов
- •8.2. Алгоритмы формирования има
- •8.3. Морфологический анализ.
- •9.Методы многокритериальной оценки альтернатив.
- •9.1. Различные группы задач принятия решений.
- •9.2.Многокритериальная теория полезности (maut)(Аксиоматические методы многкритериальной оценки).
- •9.2.1. Основные этапы подхода maut
- •9.2.2. Аксиоматическое обоснование
- •9.2.3.Основные теоремы.
- •9.2.4.Построение однокритериальных функций полезности
- •9.2.5. Проверка условий независимости
- •9.3.Проверка условий независимости по полезности
- •9.2.6.Определение весовых коэффициентов (коэффициентов важности) критериев
- •9.2.7.Определение полезности альтернатив
- •9.2.8.Веса критериев
- •9.2.9.Как люди назначают веса критериев
- •9.2.10.Практическое применение
- •9.2.11.Метод smart - простой метод многокритериальной оценки.
- •9.2.12.Первый эвристический метод
- •9.2.13.Выводы
- •9.3. Подход аналитической иерархии.
- •9.3.1.Основные этапы подхода аналитической иерархии
- •9.3.2.Структуризация
- •9.3.3.Попарные сравнения.
- •9.3.4.Определение наилучшей альтернативы
- •9.3.5.Проверка согласованности суждений лпр
- •9.3.6.Система поддержки принятия решений Expert Choice
- •9.3.7.Контрпримеры и противоречия.
- •9.4.Мультипликативный метод аналитической иерархии
- •9.5.Пример практического применения подхода анр
- •9.6.Выводы
- •9.7. Методы electre(Прямые методы многокритериальной оценки альтернатив).
- •9.7.1.Конструктивистский подход
- •9.7.2.Два основных этапа
- •9.7.3.Свойства бинарных отношений
- •9.8.Метод electre I
- •9.8.1.Этап разработки индексов
- •9.8.2.Этап исследования множества альтернатив
- •9.9.Метод electre II
- •9.9.1.Этап разработки индексов
- •9.9.2.Этап исследования множества альтернатив
- •9.10.Метод electre III
- •9.10.1. Этап разработки индексов
- •9.10.2.Этап исследования альтернатив
- •Пример.
- •9.10.3.Пример практического применения метода electre III
- •9.10.4.Некоторые сопоставления
- •9.11.Выводы
- •10.Деревья решений.
- •Рнс. 10.1. Дерево решений
- •11. Методы принятия решений в многокритериальных задачах и постулируемые принципы оптимальности.
- •11.1.Метод главного критерия
- •11.2.Метод доминантной структуры (альтернативы)
- •11.3.Метод "эффективность - стоимость"
- •11.4.Построение множества Парсто (компромиссы Парето)
- •11.5.Отказ от рассмотрения проблемы многокритериального выбора
- •11.6.Методы порогов сравнимости
- •11.7.Компромиссное распределение ресурсов между целями.
- •11.8.Метод деревьев решений
- •11.9.Метод решения многокритериальных задач при вычислимых критериях
- •12. Вербальный анализ решений и диалоговые методы принятия решений.
- •12.1. Особый класс задач принятия решений: неструктуризованные проблемы с качественными переменными
- •12.2. Качественная модель лица, принимающего решения
- •12.2.1. Черты человеческой системы переработки информации
- •12.2.2. Особенности поведения человека при принятии решений
- •12.3. Какими должны быть методы анализа неструктуризованных проблем
- •12.4. Измерения
- •12.4.1. Качественные измерения
- •12.4.2. Сравнительные качественные оценки
- •12.5. Построение решающего правила
- •12.6. Проверка информации лпр на непротиворечивость
- •12.7. Обучающие процедуры
- •12.8. Получение объяснений
- •12.9. Основные характеристики методов вербального анализа решений
- •12.10. Метод запрос (зАмкнутые пРоцедуры у Опорных Ситуаций)
- •12.10.1. Постановка задачи
- •12.10.2. Пример: как оценить проекты?
- •12.11. Выявление предпочтений лпр
- •12.11.1.Единая порядковая шкала для двух критериев
- •12.11.2.Проверка условия независимости для двух критериев
- •12.11.3.Независимость по понижению качества для группы критериев
- •12.11.4.Единая порядковая шкала оценок всех критериев
- •12.11.5.Проверка информации лпр на непротиворечивость
- •12.11.6.Частный случай
- •12.11.7. Психологическая корректность процедуры выявления предпочтений лпр
- •12.12.Сравнение альтернатив.
- •12.12.1.Упорядочение группы заданных альтернатив
- •12.13. Преимущества метода запрос
- •12.13.1. Практическое применение метода запрос
- •12.14. Сравнение трех сппр
- •12.15.Выводы
- •13.Функция полезности.
- •14. Принятие решений в условиях неопределенности.
- •15. Статические модели принятия единичных решений в условиях определенности.
- •15.1. Метод сравнительного учета затрат.
- •15.2. Метод сравнительного учета прибыли.
- •15.3. Метод сравнительного учета рентабельности.
- •15.4. Метод статических амортизационных расчетов.
- •16.Сущность глобального и локального критериев оптимальности.
- •17.Критерии принятия решений.
- •17.1. Критерий Байеса-Лапласа.
- •17.2.Составной критерий Байеса-Лапласа минимаксный.
- •17.3.Критерий Гермейера.
- •17.4. Критерий Сэвиджа.
- •17.5.Критерий Гурвица.
- •17.6.Критерий произведений.
- •18.Принятие коллективных решений.
- •18.1.Плюсы и минусы коллективных решений, современные концепции группового выбора.
- •18.2. Теорема Эрроу о невозможности. Анализ предпосылок теоремы Эрроу.
- •18.3.Правило Кондорсе.
- •18.4.Правило Борда.
- •19.Принятие решений в условиях нечеткой информации.
- •19.1.Зачем нужны нечеткие множества.
- •19.2. Операции над нечеткими множествами.
- •19.3. Задача достижения нечетко определенной цели.
- •19.4.Нечеткие отношения и их свойства.
- •19.4.1.Основные определения.
- •19.4.2.Операции над нечеткими отношениями.
- •19.4.3.Свойства нечетких отношений.
- •19.4.4.Декомпозиция нечетких отношений.
- •19.4.5.Транзитивное замыкание нечетких отношений.
- •19.4.6.Проекции нечетких отношений.
- •20.2.Кооперативные игры.
- •20.3. Дифференциальная игра.
- •20.4. Платежная матрица. Цена игры. Принципы максимина и минимакса.
- •20.5. Решение игры в смешанных стратегиях. Основная теорема теории матричных игр.
- •20.6.Сведение матричной игры к задаче линейного программирования.
- •21. Методы безусловной оптимизации
- •21.1 Классификация методов безусловной оптимизации.
- •21.2 Скорости сходимости.
- •21.3 Методы первого порядка.
- •21.4 Метод наискорейшего спуска
- •21.5 Методы сопряженных градиентов.
- •21.6 Градиентные методы.
- •21.7 Методы второго порядка.
- •21.8 Метод Ньютона и его модификации.
- •21.9 Модифицированный метод Ньютона.
- •21.10 Метод секущих.
- •21.11 Квазиньютоновские методы. Методы переменной метрики.
- •21.12 Конечно-разностная аппроксимация производных. Конечно-разностные методы.
- •21.12.1 Постановка задачи.
- •21.12.2 Общая схема.
- •21.12.3 Устойчивость схемы.
- •21.12.4 Повышение порядка аппроксимации.
- •21.12.5 О решении разностных схем.
- •21.12.6 Нелинейные задачи.
- •21.13 Методы нулевого порядка.
- •21.13.1 Основные определения
- •21.13.2 Общая характеристика методов нулевого порядка
- •21.14 Метод покоординатного спуска
- •21.15 Метод Хука—Дживса
- •21.16 Метод сопряженных направлений.
- •21.17 Методы деформируемых конфигураций.
- •21.18 Симплексные методы.
- •21.19 Комплекс-методы.
- •21.20 Решение задач многокритериальной оптимизации методами прямого поиска.
- •21.20.1 Модифицированный поиск Хука-Дживса
- •21.20.2 Методы случайного поиска
- •22. Задачи с ограничением (условная оптимизация)
- •22.1 Основные подходы к решению задач с ограничениями. Классификация задач и методов.
- •22.2 Метод проекции градиента.
- •22.3 Метод условного градиента.
- •22.4 Методы сведения задач с ограничениями к задачам безусловной оптимизации. Методы возможных направлений
- •22.4.1 Метод Зойтендейка
- •22.4.2 Метод возможных направлений для нелинейных ограничений-неравенств и равенств
- •22.4.3 Модификация метода возможных направлений
- •22.5 Методы штрафных функций
- •22.5.1 Методы внутренних штрафных функций
- •22.5.2 Методы внешних штрафных функций
- •22.6 Комбинированные алгоритмы штрафных функций
- •23. Стохастичесоке программирование
- •23.1 Задачи стохастического программирования. Прямые и непрямые методы.
- •23.2 Прямые методы. Стохастические квазиградиентные методы. Метод проектирования стохастических квазиградиентов.
- •23.3 Прямые методы. Метод стохастической аппроксимации
- •23.4 Прямые методы. Методы случайного поиска. Статистические методы поиска нелинейного программирования
- •23.5 Стохастические разностные методы. Методы конечных разностей в стохастическом программировании.
- •Статистические методы поиска нелинейного программирования
- •23.6 Стохастические задачи с ограничениями вероятностей природы.
- •24. Дискретное программирование
- •24.1 Методы и задачи дискретного программирования. Задачи целочисленного линейного программирования.
- •24.1.1 Задачи с неделимостями
- •24.1.2 Задача о рюкзаке.
- •24.1.3 Экстремальные комбинаторные задачи
- •24.1.4 Задача о коммивояжере.
- •24.1.5 Задача о покрытии.
- •24.1.6 Задачи на несвязных областях.
- •24.1.7 Задачи на невыпуклых областях.
- •24.1.8 Задачи с разрывными целевыми функциями
- •24.1.9 Задачи, сводящиеся к целочисленным
- •24.2 Методы отсечения Гомори.
- •24.3 Метод ветвей и границ.
- •24.4 Метод ветвей и границ для задачи целочисленного программирования
- •24.5 Задача о назначениях.
- •24.6 Венгерский алгоритм.
- •24.6.1 Венгерский метод для задачи о назначениях. Постановка задачи.
- •24.6.2 Описание алгоритма венгерского метода
- •24.6.3 Пример решения задачи о назначених венгерским алгоритмом.
- •24.7 Задачи оптимизации на сетях и графах.
- •Метод итераций по критерию
- •Метод итераций по стратегиям (в пространстве стратегий)
- •Минимизация средних затрат.
- •Пример 24.1
- •Пример 24.2.
- •25. Динамическое программирование
- •25.1 Метод динамического программирования для многошаговых задач принятия решений.
- •25.2 Принцип оптимальности Беллмана
- •25.3 Основное функциональное уравнение.
- •25.4 Вычислительная схема метода динамического программирования.
- •26. Общие положения о системном анализе.
- •27. Задача математического программирования.
- •27.1. Формы записи задач нечеткого математического программирования.
- •27.2. Классификация методов нелинейного математического программирования.
- •28. Линейное программирование.
- •28.1. Общие положения.
- •28.2. Геометрическая интерпретация множества решений системы линейных неравенств с 2 неизвестными.
- •28.3. Постановка задачи линейного программирования и двойственная задача линейного программирования.
- •28.3.1. Стандартная задача лп.
- •28.3.2. Каноническая задача лп.
- •28.3.3. Общая задача лп.
- •28.3.4. Двойственная задача линейного программирования.
- •28.3.5. Теорема двойственности.
- •28.3.6. Теорема равновесия.
- •28.4. Решение систем линейных неравенств. Гиперплоскость и полупространство.
- •28.5. Основные теоремы линейного программирования. Допустимые множества и оптимальные решения задач линейного программирования.
- •28.6. Симплексный метод решения задачи линейного программирования.
- •28.7. Условия существования и свойства оптимальных решений задачи линейного программирования.
- •28.7.1. Оптимальные решения.
- •28.7.2. Необходимые и достаточные условия оптимальности решения.
- •28.7.2.1. Нелинейное программирование без ограничений.
- •28.7.2.2. Нелинейное программирование с ограничениями в виде равенств и неравенств.
- •29. Двойственность в линейном программировании.
- •29.1. Общие положения.
- •29.2. Несимметричные двойственные задачи. Теорема двойственности.
- •29.3. Симметричные двойственные задачи.
- •29.4. Виды математических моделей двойственных задач.
- •29.5. Двойственный симплексный метод.
- •30.1.3. Классические способы отыскания решения экстремальных задач.
- •30.1.4. Условие регулярности.
- •30.1.5. Функция Лагранжа. Условия оптимальности.
- •30.1.6. Теорема Куна-Таккера.
- •30.1.7. Дифференциальные условия Куна-Таккера.
- •30.1.8. Общая схема решения задачи выпуклого программирования.
- •30.2. Выпуклые множества и функции.
- •30.3. Поиск экстремума функции.
- •31. Задача нелинейного программирования при ограничениях в неравенствах.
- •31.1. Теорема Куна-Таккера.
- •31.2. Седловая точка и задача нелинейного программирования.
- •31.3. Применение теоремы Куна-Таккера для задачи выпуклого программирования.
- •Список использованных источников
9.2.7.Определение полезности альтернатив
После нахождения весов критериев и построения однокри-териальных функций полезности мы имеем всю необходимую информацию. В соответствии с теоретическими результатами остается установить вид функции полезности. В нашем примере сумма коэффициентов важности критериев
Считая полученное значение достаточно близким к единице, выбираем аддитивную форму представления функции полезности:
Зная оценки альтернатив (вариантов площадок), можем подставить их в эту формулу, определить полезность каждой альтернативы, сравнить полезности и выбрать альтернативу с наибольшей полезностью.
Пусть заданы четыре альтернативы со следующими оценками:
А ($ 180 млн, 70 мин., 10 тыс.);
В ($ 170 млн, 40 мин., 15 тыс.);
С ($ 160 млн, 55 мин., 20 тыс.);
D ($ 150 млн, 50 мин., 25 тыс.).
Подставляя в формулы для вычисления полезности альтернатив значения полезностей оценок и веса критериев, получаем:
U(A)= 0,55x0,25+0,22x0,4+0,33x0,89=0,52;
U(B) = 0,684; U(C)-0,66; U(D)=0,705;
U(D) => U(B) => U(C)=> U(A).
Итак, альтернатива D — лучшая.
9.2.8.Веса критериев
Понятие коэффициентов важности (весов) критериев применяется как в строгих методах, основанных на MAUT, так и в эвристических методах. Формализация этого понятия была предложена В.В. Подиновским [12].
Обозначим векторную оценку альтернативы Ai как xi=(x1i...XN1). Обозначим через xj векторную оценку, полученную из xi перестановкой ее компонентов xij и Xik. Предположим, что все критерии — числовые и большие значения лучше меньших.
Определение 1. Критерии Cj и Сь - равноважные, если каждые две векторные оценки xi и х^ одинаковы по предпочтительности.
Определение 2. Утверждение «критерий Cj важнее критерия Ск» означает, что векторная оценка xj, в которой XiJ > xi ,
предпочтительнее оценки xf .
Таким образом, упорядочение критериев по важности предполагает, что есть какая-то общая для всех критериев шкала с одинаковой интерпретацией оценок.
На основе формальных определений можно получить различные правила сравнения альтернатив. Так, можно упорядочить компоненты двух векторов Xj и Xj по невозрастанию и затем почленно сравнить, определяя случаи эквивалентности и доминирования по Э—П.
Наряду с приведенными выше определениями вводятся понятия степени превосходства критериев (один критерий в t раз важнее другого) и количественные веса критериев.
9.2.9.Как люди назначают веса критериев
Как в методах, имеющих аксиоматическое обоснование, так и в эвристических методах информация, необходимая для определения коэффициентов важности критериев может быть получена только от ЛПР. Существуют различные способы определения весов критериев. Приведем наиболее известные из них [9].
Метод отношений, который был представлен выше как этап в методе SMART. ЛПР ранжирует критерии по важности, вес наиболее важного назначается как 100 баллов (либо вес наименее важного назначается как 10 баллов), а веса других критериев определяются из отношений критериев по важности.
Метод наибольших отклонений (swing) [10]. Предполагаются худшие оценки по всем критериям, а затем ЛПР просят оценить, по какому критерию изменение от худшей оценки до лучшей оценки наиболее важно. Затем находится второй по важности критерий и т.д. Изменению наиболее важного критерия (swing) присваивается 100 баллов. ЛПР просят Определить в баллах значения изменений от худших до лучших оценок по остальным критериям.
Метод компенсации был представлен выше как этап метода, основанного на MAUT. При методе компенсаций сравниваются две альтернативы, различающиеся оценками только по двум критериям, и определяются точки безразличия на плоскостях двух критериев.
Метод определения цены критериев является вариантом метода наибольших отклонений. ЛПР должен определить, какую сумму денег он готов заплатить за переход от худшего к лучшему значению по каждому из критериев. При этом как базовый берется критерий стоимости.
Метод взвешенной полезности также был представлен в виде последнего этапа метода, основанного на MAUT. При этом методе ЛПР назначает вероятность р, при которой он безразличен при выборе между альтернативой, имеющей лучшую оценку по i-му критерию и худшую — по остальным, и лотереей,дающей с вероятностью р альтернативу со всеми лучшими оценками и с вероятностью (1— р) — альтернативу со всеми худшими оценками.
Наряду с различными способами определения весов принято рассматривать две различные структуры объединения критериев: иерархическую (критерии более общего характера разделяются на частные) и неиерархическую.
В настоящее время известны результаты многих психологических экспериментов, в которых сравнивались различные способы назначения весов критериев. Общий результат неутешителен [9]: эти способы дают различные результаты, которые могут привести к различиям в упорядочении альтернатив. Иначе говоря, человеческие ошибки при определении весов критериев тем или иным способом могут привести к различным результатам при принятии решений.
