- •1.Основные понятия системного анализа
- •1.1.Определения и свойства системы
- •1.2.Виды описаний систем
- •1.3.Понятие системного подхода
- •1.4.Аспекты системного подхода
- •2.Классификация систем
- •3.Модели систем
- •4.Постановка задач принятия решений.
- •5.Классификация задач принятия решений.
- •6.Этапы решения задач.
- •6.1.Одношаговые схемы принятия решения
- •6.2.Многошаговые решения
- •7.Экспертные процедуры.
- •7.1. Задачи оценивания.
- •7.2. Алгоритмы экспертизы.
- •7.3 Методы получения экспертной информации.
- •7.4. Шкалы измерений, методы экспертных измерений.
- •7.5.Проверка согласованности мнений экспертов и классификация экспертных мнений.
- •7.6.Нахождение итогового мнения комиссии экспертов.
- •7.6.1.Бинарные отношения и расстояние Кемени.
- •7.6.2.Медиана Кемени и законы больших чисел.
- •7.7. Основные стадии экспертного опроса.
- •7.8. Оценка компетентности экспертов.
- •7.9. Методы обработки экспертной информации.
- •7.9.1. Статистические методы
- •7.9.2. Алгебраический метод.
- •7.9.3 Методы шкалирования.
- •2. Метод троек.
- •8. Формирование исходного множества альтернатив и Морфологический анализ.
- •8.1. Общая характеристика алгоритмов
- •8.2. Алгоритмы формирования има
- •8.3. Морфологический анализ.
- •9.Методы многокритериальной оценки альтернатив.
- •9.1. Различные группы задач принятия решений.
- •9.2.Многокритериальная теория полезности (maut)(Аксиоматические методы многкритериальной оценки).
- •9.2.1. Основные этапы подхода maut
- •9.2.2. Аксиоматическое обоснование
- •9.2.3.Основные теоремы.
- •9.2.4.Построение однокритериальных функций полезности
- •9.2.5. Проверка условий независимости
- •9.3.Проверка условий независимости по полезности
- •9.2.6.Определение весовых коэффициентов (коэффициентов важности) критериев
- •9.2.7.Определение полезности альтернатив
- •9.2.8.Веса критериев
- •9.2.9.Как люди назначают веса критериев
- •9.2.10.Практическое применение
- •9.2.11.Метод smart - простой метод многокритериальной оценки.
- •9.2.12.Первый эвристический метод
- •9.2.13.Выводы
- •9.3. Подход аналитической иерархии.
- •9.3.1.Основные этапы подхода аналитической иерархии
- •9.3.2.Структуризация
- •9.3.3.Попарные сравнения.
- •9.3.4.Определение наилучшей альтернативы
- •9.3.5.Проверка согласованности суждений лпр
- •9.3.6.Система поддержки принятия решений Expert Choice
- •9.3.7.Контрпримеры и противоречия.
- •9.4.Мультипликативный метод аналитической иерархии
- •9.5.Пример практического применения подхода анр
- •9.6.Выводы
- •9.7. Методы electre(Прямые методы многокритериальной оценки альтернатив).
- •9.7.1.Конструктивистский подход
- •9.7.2.Два основных этапа
- •9.7.3.Свойства бинарных отношений
- •9.8.Метод electre I
- •9.8.1.Этап разработки индексов
- •9.8.2.Этап исследования множества альтернатив
- •9.9.Метод electre II
- •9.9.1.Этап разработки индексов
- •9.9.2.Этап исследования множества альтернатив
- •9.10.Метод electre III
- •9.10.1. Этап разработки индексов
- •9.10.2.Этап исследования альтернатив
- •Пример.
- •9.10.3.Пример практического применения метода electre III
- •9.10.4.Некоторые сопоставления
- •9.11.Выводы
- •10.Деревья решений.
- •Рнс. 10.1. Дерево решений
- •11. Методы принятия решений в многокритериальных задачах и постулируемые принципы оптимальности.
- •11.1.Метод главного критерия
- •11.2.Метод доминантной структуры (альтернативы)
- •11.3.Метод "эффективность - стоимость"
- •11.4.Построение множества Парсто (компромиссы Парето)
- •11.5.Отказ от рассмотрения проблемы многокритериального выбора
- •11.6.Методы порогов сравнимости
- •11.7.Компромиссное распределение ресурсов между целями.
- •11.8.Метод деревьев решений
- •11.9.Метод решения многокритериальных задач при вычислимых критериях
- •12. Вербальный анализ решений и диалоговые методы принятия решений.
- •12.1. Особый класс задач принятия решений: неструктуризованные проблемы с качественными переменными
- •12.2. Качественная модель лица, принимающего решения
- •12.2.1. Черты человеческой системы переработки информации
- •12.2.2. Особенности поведения человека при принятии решений
- •12.3. Какими должны быть методы анализа неструктуризованных проблем
- •12.4. Измерения
- •12.4.1. Качественные измерения
- •12.4.2. Сравнительные качественные оценки
- •12.5. Построение решающего правила
- •12.6. Проверка информации лпр на непротиворечивость
- •12.7. Обучающие процедуры
- •12.8. Получение объяснений
- •12.9. Основные характеристики методов вербального анализа решений
- •12.10. Метод запрос (зАмкнутые пРоцедуры у Опорных Ситуаций)
- •12.10.1. Постановка задачи
- •12.10.2. Пример: как оценить проекты?
- •12.11. Выявление предпочтений лпр
- •12.11.1.Единая порядковая шкала для двух критериев
- •12.11.2.Проверка условия независимости для двух критериев
- •12.11.3.Независимость по понижению качества для группы критериев
- •12.11.4.Единая порядковая шкала оценок всех критериев
- •12.11.5.Проверка информации лпр на непротиворечивость
- •12.11.6.Частный случай
- •12.11.7. Психологическая корректность процедуры выявления предпочтений лпр
- •12.12.Сравнение альтернатив.
- •12.12.1.Упорядочение группы заданных альтернатив
- •12.13. Преимущества метода запрос
- •12.13.1. Практическое применение метода запрос
- •12.14. Сравнение трех сппр
- •12.15.Выводы
- •13.Функция полезности.
- •14. Принятие решений в условиях неопределенности.
- •15. Статические модели принятия единичных решений в условиях определенности.
- •15.1. Метод сравнительного учета затрат.
- •15.2. Метод сравнительного учета прибыли.
- •15.3. Метод сравнительного учета рентабельности.
- •15.4. Метод статических амортизационных расчетов.
- •16.Сущность глобального и локального критериев оптимальности.
- •17.Критерии принятия решений.
- •17.1. Критерий Байеса-Лапласа.
- •17.2.Составной критерий Байеса-Лапласа минимаксный.
- •17.3.Критерий Гермейера.
- •17.4. Критерий Сэвиджа.
- •17.5.Критерий Гурвица.
- •17.6.Критерий произведений.
- •18.Принятие коллективных решений.
- •18.1.Плюсы и минусы коллективных решений, современные концепции группового выбора.
- •18.2. Теорема Эрроу о невозможности. Анализ предпосылок теоремы Эрроу.
- •18.3.Правило Кондорсе.
- •18.4.Правило Борда.
- •19.Принятие решений в условиях нечеткой информации.
- •19.1.Зачем нужны нечеткие множества.
- •19.2. Операции над нечеткими множествами.
- •19.3. Задача достижения нечетко определенной цели.
- •19.4.Нечеткие отношения и их свойства.
- •19.4.1.Основные определения.
- •19.4.2.Операции над нечеткими отношениями.
- •19.4.3.Свойства нечетких отношений.
- •19.4.4.Декомпозиция нечетких отношений.
- •19.4.5.Транзитивное замыкание нечетких отношений.
- •19.4.6.Проекции нечетких отношений.
- •20.2.Кооперативные игры.
- •20.3. Дифференциальная игра.
- •20.4. Платежная матрица. Цена игры. Принципы максимина и минимакса.
- •20.5. Решение игры в смешанных стратегиях. Основная теорема теории матричных игр.
- •20.6.Сведение матричной игры к задаче линейного программирования.
- •21. Методы безусловной оптимизации
- •21.1 Классификация методов безусловной оптимизации.
- •21.2 Скорости сходимости.
- •21.3 Методы первого порядка.
- •21.4 Метод наискорейшего спуска
- •21.5 Методы сопряженных градиентов.
- •21.6 Градиентные методы.
- •21.7 Методы второго порядка.
- •21.8 Метод Ньютона и его модификации.
- •21.9 Модифицированный метод Ньютона.
- •21.10 Метод секущих.
- •21.11 Квазиньютоновские методы. Методы переменной метрики.
- •21.12 Конечно-разностная аппроксимация производных. Конечно-разностные методы.
- •21.12.1 Постановка задачи.
- •21.12.2 Общая схема.
- •21.12.3 Устойчивость схемы.
- •21.12.4 Повышение порядка аппроксимации.
- •21.12.5 О решении разностных схем.
- •21.12.6 Нелинейные задачи.
- •21.13 Методы нулевого порядка.
- •21.13.1 Основные определения
- •21.13.2 Общая характеристика методов нулевого порядка
- •21.14 Метод покоординатного спуска
- •21.15 Метод Хука—Дживса
- •21.16 Метод сопряженных направлений.
- •21.17 Методы деформируемых конфигураций.
- •21.18 Симплексные методы.
- •21.19 Комплекс-методы.
- •21.20 Решение задач многокритериальной оптимизации методами прямого поиска.
- •21.20.1 Модифицированный поиск Хука-Дживса
- •21.20.2 Методы случайного поиска
- •22. Задачи с ограничением (условная оптимизация)
- •22.1 Основные подходы к решению задач с ограничениями. Классификация задач и методов.
- •22.2 Метод проекции градиента.
- •22.3 Метод условного градиента.
- •22.4 Методы сведения задач с ограничениями к задачам безусловной оптимизации. Методы возможных направлений
- •22.4.1 Метод Зойтендейка
- •22.4.2 Метод возможных направлений для нелинейных ограничений-неравенств и равенств
- •22.4.3 Модификация метода возможных направлений
- •22.5 Методы штрафных функций
- •22.5.1 Методы внутренних штрафных функций
- •22.5.2 Методы внешних штрафных функций
- •22.6 Комбинированные алгоритмы штрафных функций
- •23. Стохастичесоке программирование
- •23.1 Задачи стохастического программирования. Прямые и непрямые методы.
- •23.2 Прямые методы. Стохастические квазиградиентные методы. Метод проектирования стохастических квазиградиентов.
- •23.3 Прямые методы. Метод стохастической аппроксимации
- •23.4 Прямые методы. Методы случайного поиска. Статистические методы поиска нелинейного программирования
- •23.5 Стохастические разностные методы. Методы конечных разностей в стохастическом программировании.
- •Статистические методы поиска нелинейного программирования
- •23.6 Стохастические задачи с ограничениями вероятностей природы.
- •24. Дискретное программирование
- •24.1 Методы и задачи дискретного программирования. Задачи целочисленного линейного программирования.
- •24.1.1 Задачи с неделимостями
- •24.1.2 Задача о рюкзаке.
- •24.1.3 Экстремальные комбинаторные задачи
- •24.1.4 Задача о коммивояжере.
- •24.1.5 Задача о покрытии.
- •24.1.6 Задачи на несвязных областях.
- •24.1.7 Задачи на невыпуклых областях.
- •24.1.8 Задачи с разрывными целевыми функциями
- •24.1.9 Задачи, сводящиеся к целочисленным
- •24.2 Методы отсечения Гомори.
- •24.3 Метод ветвей и границ.
- •24.4 Метод ветвей и границ для задачи целочисленного программирования
- •24.5 Задача о назначениях.
- •24.6 Венгерский алгоритм.
- •24.6.1 Венгерский метод для задачи о назначениях. Постановка задачи.
- •24.6.2 Описание алгоритма венгерского метода
- •24.6.3 Пример решения задачи о назначених венгерским алгоритмом.
- •24.7 Задачи оптимизации на сетях и графах.
- •Метод итераций по критерию
- •Метод итераций по стратегиям (в пространстве стратегий)
- •Минимизация средних затрат.
- •Пример 24.1
- •Пример 24.2.
- •25. Динамическое программирование
- •25.1 Метод динамического программирования для многошаговых задач принятия решений.
- •25.2 Принцип оптимальности Беллмана
- •25.3 Основное функциональное уравнение.
- •25.4 Вычислительная схема метода динамического программирования.
- •26. Общие положения о системном анализе.
- •27. Задача математического программирования.
- •27.1. Формы записи задач нечеткого математического программирования.
- •27.2. Классификация методов нелинейного математического программирования.
- •28. Линейное программирование.
- •28.1. Общие положения.
- •28.2. Геометрическая интерпретация множества решений системы линейных неравенств с 2 неизвестными.
- •28.3. Постановка задачи линейного программирования и двойственная задача линейного программирования.
- •28.3.1. Стандартная задача лп.
- •28.3.2. Каноническая задача лп.
- •28.3.3. Общая задача лп.
- •28.3.4. Двойственная задача линейного программирования.
- •28.3.5. Теорема двойственности.
- •28.3.6. Теорема равновесия.
- •28.4. Решение систем линейных неравенств. Гиперплоскость и полупространство.
- •28.5. Основные теоремы линейного программирования. Допустимые множества и оптимальные решения задач линейного программирования.
- •28.6. Симплексный метод решения задачи линейного программирования.
- •28.7. Условия существования и свойства оптимальных решений задачи линейного программирования.
- •28.7.1. Оптимальные решения.
- •28.7.2. Необходимые и достаточные условия оптимальности решения.
- •28.7.2.1. Нелинейное программирование без ограничений.
- •28.7.2.2. Нелинейное программирование с ограничениями в виде равенств и неравенств.
- •29. Двойственность в линейном программировании.
- •29.1. Общие положения.
- •29.2. Несимметричные двойственные задачи. Теорема двойственности.
- •29.3. Симметричные двойственные задачи.
- •29.4. Виды математических моделей двойственных задач.
- •29.5. Двойственный симплексный метод.
- •30.1.3. Классические способы отыскания решения экстремальных задач.
- •30.1.4. Условие регулярности.
- •30.1.5. Функция Лагранжа. Условия оптимальности.
- •30.1.6. Теорема Куна-Таккера.
- •30.1.7. Дифференциальные условия Куна-Таккера.
- •30.1.8. Общая схема решения задачи выпуклого программирования.
- •30.2. Выпуклые множества и функции.
- •30.3. Поиск экстремума функции.
- •31. Задача нелинейного программирования при ограничениях в неравенствах.
- •31.1. Теорема Куна-Таккера.
- •31.2. Седловая точка и задача нелинейного программирования.
- •31.3. Применение теоремы Куна-Таккера для задачи выпуклого программирования.
- •Список использованных источников
29.2. Несимметричные двойственные задачи. Теорема двойственности.
В несимметричных двойственных задачах система ограничений исходной задачи задается в виде равенств, а двойственной — в виде неравенств, причем в последней переменные могут быть и отрицательными. Для простоты доказательств постановку задачи условимся записывать в матричной форме.
Исходная задача. Найти матрицу-столбец X = (x1, x2, …, xn), которая удовлетворяет ограничениям
(29.2.1) AX = A0, Х 0
и минимизирует линейную функцию Z = СХ.
Двойственная задача. Найти матрицу-строку Y = (y1, y2, …, ym), которая удовлетворяет ограничениям
(29.2.2) YA С
и максимизирует линейную функцию f = YA0
В обеих задачах C = (c1, c2, …, cn) - матрица-строка, A0 = (b1, b2, …, bm) — матрица-столбец, А = (aij) — матрица коэффициентов системы ограничений. Связь между оптимальными планами пары двойственных задач устанавливает следующая теорема.
Теорема (теорема двойственности). Если из пары двойственных задач одна обладает оптимальным планом, то и другая имеет решение, причем для экстремальных значений линейных функций выполняется соотношение
min Z = max f.
Если линейная функция одной из задач не ограничена, то другая не имеет решения.
Д о к а з а т е л ь с т в о. Предположим, что исходная задача обладает оптимальным планом, который получен симплексным методом. Не нарушая общности, можно считать, что окончательный базис состоит из т первых векторов A1, A2, ..., Am. Тогда последняя симплексная таблица имеет вид табл. 29.2.1.
Т а б л и ц а 29.2.1
i |
Базис |
С базиса |
A0 |
C1 |
C2 |
… |
Cm |
Cm+1 |
… |
cn |
A1 |
A2 |
… |
Am |
Am+1 |
… |
An |
||||
1 2 . . . m |
A1 A2 . . . Am |
C1 C2 . . . Cm |
x1 x2 . . . xm |
1 0 . . . 0 |
0 1 . . . 0 |
... ... . . . . |
0 0 . . . 1 |
x1, m+1 x2, m+1 . . . xm, m+1 |
… … . . . … |
x1n x2n . . . xmn |
m+1 |
Zi - Cj |
Z0 |
Z1 – C1 |
Z2 – C2 |
... |
Zm – Cm |
Zm+1 – Cm+1 |
… |
Zn – Cn |
|
Пусть D — матрица, составленная из компонент векторов окончательного базиса A1, A2, ..., Am; тогда табл. 29.2.1. состоит из коэффициентов разложения векторов A1, A2, ..., An исходной системы по векторам базиса, т. е. каждому вектору Aj в этой таблице соответствует такой вектор Xj что
(29.2.3) Aj = DXj (j= 1,2, ,.., n).
Для оптимального плана получаем
(29.2.4) A0 = DX*,
где X* = (x*1, x*2, …, x*m).
Обозначим через
матрицу, составленную из коэффициентов
разложения векторов Аj
(j
= 1, 2, ..., n),
записанных в табл. 29.2.1. Тогда, учитывая
соотношения (29.2.3) и (29.2.4), получаем:
(29.2.5) A = D , D-1A = ,
(29.2.6) A0=DX*; D-1A0 = X*,
(29.2.7) min Z= C*X*,
(29.2.8)
=
C*
—C
0,
где С* = (C*1, C*2, …, C*m), С = (C1, C2, …, Cm, Cm+1, …, Cn), a = (C*X1 – C1; С*Х2 - С2, ..., C*Xn – Cn) = (Z1 – С1; Z2 - C2; ..., Zn — Cn) — вектор, компоненты которого неположительны, так как они совпадают с Zj — Cj 0, соответствующими оптимальному плану.
Оптимальный план исходной задачи имеет вид X* = D-1 А0, поэтому оптимальный план двойственной задачи ищем в виде
(29.2.9) Y* = C*D-1.
Покажем, что Y* действительно план двойственной задачи. Для этого ограничения (1.2) запишем в виде неравенства YA — С 0, в левую часть которого подставим Y*. Тогда на основании (29.2.9), (29.2.5) и (29.2.8) получим
Y* А – С = С* D-1А – С = С* - С 0,
откуда находим Y*A С.
Так как Y* удовлетворяет ограничениям (29.2.2), то это и есть план двойственной задачи. При этом плане значение линейной функции двойственной задачи f (Y*) = Y*A0. Учитывая соотношения (29.2.9), (29.2.6) и (29.2.7), имеем
(29.2.10) f (Y*) = Y*A0 = C*D-1 A0 = C*X* = min Z(X).
Таким образом, значение линейной функции двойственной задачи от Y* численно равно минимальному значению линейной функции исходной задачи.
Докажем теперь, что Y* является оптимальным планом. Умножим (29.2.1) на любой план Y двойственной задачи, а (29.2.2) — на любой план X исходной задачи: YAX=YA0=f (Y), YAX СХ = Z (X), отсюда следует, что для любых планов Х и Y выполняется неравенство
(29.2.11) f (Y) Z (X).
Этим же соотношением связаны и экстремальные значения max f (Y) min Z (Х). Из последнего неравенства заключаем, что максимальное значение линейной функции достигается только в случае, если max f (Y) = min Z (X), но это значение [см. (29.2.10)] f (Y) достигает при плане Y*, следовательно, план Y* — оптимальный план двойственной задачи.
Аналогично можно доказать, что если двойственная задача имеет решение, то исходная также обладает решением и имеет место соотношение max f (Y) = min Z (X).
Для доказательства второй части теоремы допустим, что линейная функция исходной задачи не ограничена снизу. Тогда из (29.2.11) следует, что f (Y) - . Это выражение лишено смысла, следовательно, двойственная задача не имеет решений.
Аналогично предположим, что линейная функция двойственной задачи не ограничена сверху. Тогда из (29.2.11) получаем, что Z (X) +. Это выражение также лишено смысла, поэтому исходная задача не имеет решений.
Доказанная теорема позволяет при решении одной из двойственных задач находить оптимальный план другой.
Исходная задача. Найти минимальное значение линейной функции Z = x2 – x4 – 3x5 при ограничениях
x1
+ 2x2
- x4
+ x5
= 1,
- 4x2 + x3 + 2x4 – x5 = 2, xij 0 (j = 1, 2, …, 6)
3x2 + x5 + x6 = 5,
Здесь матрица-строка С = (0;. 1; 0; —1; — 3, 0), матрица-столбец
1 1 2 0 -1 1
0
A0 = 2 A = 0 -4 1 2 -1 0
3 0 3 0 0 1 1
1 0 0
2 -4 3
A’’ = 0 1 0
-1 2 0
1 -1 0
0 0 1
Двойственная задача. Найти максимальное значение линейной функции f = y1 + 2y2 +5y3 при ограничениях
y1
0,
2y1 – 4y2 + 3y3 1,
y2 0,
-y1 + 2y2 -1,
y1 – y2 + y3 -3,
y3 0.
Решение исходной задачи находим симплексным методом (табл. 29.2.2).
i |
Базис |
С базиса |
A0 |
0 |
1 |
0 |
-1 |
-3 |
0 |
A1 |
A2 |
A3 |
A4 |
A5 |
A6 |
||||
1 2 3 |
A1 A3 A6 |
0 0 0 |
1 2 5 |
1 0 0 |
2 -4 3 |
0 1 0 |
-1 2 0 |
1 -1 1 |
0 0 1 |
m + 1 |
Zi - Cj |
0 |
0 |
-1 |
0 |
1 |
3 |
0 |
|
1 2 3 |
A5 A3 A6 |
-3 0 0 |
1 3 4 |
1 1 -1 |
2 -2 1 |
0 1 0 |
-1 1 1 |
1 0 0 |
0 0 1 |
m + 1 |
Zi - Cj |
-3 |
-3 |
-7 |
0 |
4 |
0 |
0 |
|
1 2 3 |
A5 A4 A6 |
-3 -1 0 |
4 3 1 |
2 1 -2 |
0 -2 3 |
1 1 -1 |
0 1 0 |
1 0 0 |
0 0 1 |
m + 1 |
Zi - Cj |
-15 |
-7 |
1 |
-4 |
0 |
0 |
0 |
|
1 2 3 |
A5 A4 A2 |
-3 -1 1 |
4 11/3 1/3 |
3 -1/3 -2/3 |
0 0 1 |
1 1/3 -1/3 |
0 1 0 |
1 0 0 |
0 2/3 1/3 |
m + 1 |
Zi - Cj |
-46/3 |
-19/3 |
0 |
-11/3 |
0 |
0 |
-1/3 |
|
Табл. 29.2.2.
Оптимальный план исходной задачи X* = (0; 1/3; 0; 11/3; 4; 0), при котором Zmin = - 46/3, получен в четвертой итерации табл. 29.2.2. Используя эту итерацию, найдем оптимальный план двойственной задачи. Согласно теореме двойственности оптимальный план двойственной задачи находится из соотношения Y* = C*D-1, где матрица D-1 - матрица, обратная матрице, составленной из компонент векторов, входящих в последний базис, при котором получен оптимальный план исходной задачи. В последний базис входят векторы A5, A4, A2; значит,
1 -1 2
D = (A5, A4, A2) = -1 2 -4
1 0 3
Обратная матрица D-1 образована из коэффициентов, стоящих в столбцах A1, A3, A6 четвертой итерации:
2 1 0
D-1 = -1/3 1/3 2/3
-2/3 -1/3 1/3
Из этой же итерации следует С* = (— 3; —1; 1). Таким образом
2 1 0
Y = С*D-1 = (-3; -1; 1) -1/3 1/3 2/3
-2/3 -1/3 1/3
Y*=(-19/3; -11/3; -1/3),
т. е. yi = С*Хi, где Хi — коэффициенты разложения последней итерации, стоящие в столбцах векторов первоначального единичного базиса.
Итак, i-ю двойственную переменную можно получить из значения оценки (m + 1)-й строки, стоящей против соответствующего вектора, входившего в первоначальный единичный базиc, если к ней прибавить соответствующее значение коэффициента линейной функции:
у1 = — 19/3 + 0 = — 19/3; y2 = -11/3 + 0 = -11/3; у3 = -1/3+0 = -1/3. При этом плане max f = -46/3.
