- •1.Основные понятия системного анализа
- •1.1.Определения и свойства системы
- •1.2.Виды описаний систем
- •1.3.Понятие системного подхода
- •1.4.Аспекты системного подхода
- •2.Классификация систем
- •3.Модели систем
- •4.Постановка задач принятия решений.
- •5.Классификация задач принятия решений.
- •6.Этапы решения задач.
- •6.1.Одношаговые схемы принятия решения
- •6.2.Многошаговые решения
- •7.Экспертные процедуры.
- •7.1. Задачи оценивания.
- •7.2. Алгоритмы экспертизы.
- •7.3 Методы получения экспертной информации.
- •7.4. Шкалы измерений, методы экспертных измерений.
- •7.5.Проверка согласованности мнений экспертов и классификация экспертных мнений.
- •7.6.Нахождение итогового мнения комиссии экспертов.
- •7.6.1.Бинарные отношения и расстояние Кемени.
- •7.6.2.Медиана Кемени и законы больших чисел.
- •7.7. Основные стадии экспертного опроса.
- •7.8. Оценка компетентности экспертов.
- •7.9. Методы обработки экспертной информации.
- •7.9.1. Статистические методы
- •7.9.2. Алгебраический метод.
- •7.9.3 Методы шкалирования.
- •2. Метод троек.
- •8. Формирование исходного множества альтернатив и Морфологический анализ.
- •8.1. Общая характеристика алгоритмов
- •8.2. Алгоритмы формирования има
- •8.3. Морфологический анализ.
- •9.Методы многокритериальной оценки альтернатив.
- •9.1. Различные группы задач принятия решений.
- •9.2.Многокритериальная теория полезности (maut)(Аксиоматические методы многкритериальной оценки).
- •9.2.1. Основные этапы подхода maut
- •9.2.2. Аксиоматическое обоснование
- •9.2.3.Основные теоремы.
- •9.2.4.Построение однокритериальных функций полезности
- •9.2.5. Проверка условий независимости
- •9.3.Проверка условий независимости по полезности
- •9.2.6.Определение весовых коэффициентов (коэффициентов важности) критериев
- •9.2.7.Определение полезности альтернатив
- •9.2.8.Веса критериев
- •9.2.9.Как люди назначают веса критериев
- •9.2.10.Практическое применение
- •9.2.11.Метод smart - простой метод многокритериальной оценки.
- •9.2.12.Первый эвристический метод
- •9.2.13.Выводы
- •9.3. Подход аналитической иерархии.
- •9.3.1.Основные этапы подхода аналитической иерархии
- •9.3.2.Структуризация
- •9.3.3.Попарные сравнения.
- •9.3.4.Определение наилучшей альтернативы
- •9.3.5.Проверка согласованности суждений лпр
- •9.3.6.Система поддержки принятия решений Expert Choice
- •9.3.7.Контрпримеры и противоречия.
- •9.4.Мультипликативный метод аналитической иерархии
- •9.5.Пример практического применения подхода анр
- •9.6.Выводы
- •9.7. Методы electre(Прямые методы многокритериальной оценки альтернатив).
- •9.7.1.Конструктивистский подход
- •9.7.2.Два основных этапа
- •9.7.3.Свойства бинарных отношений
- •9.8.Метод electre I
- •9.8.1.Этап разработки индексов
- •9.8.2.Этап исследования множества альтернатив
- •9.9.Метод electre II
- •9.9.1.Этап разработки индексов
- •9.9.2.Этап исследования множества альтернатив
- •9.10.Метод electre III
- •9.10.1. Этап разработки индексов
- •9.10.2.Этап исследования альтернатив
- •Пример.
- •9.10.3.Пример практического применения метода electre III
- •9.10.4.Некоторые сопоставления
- •9.11.Выводы
- •10.Деревья решений.
- •Рнс. 10.1. Дерево решений
- •11. Методы принятия решений в многокритериальных задачах и постулируемые принципы оптимальности.
- •11.1.Метод главного критерия
- •11.2.Метод доминантной структуры (альтернативы)
- •11.3.Метод "эффективность - стоимость"
- •11.4.Построение множества Парсто (компромиссы Парето)
- •11.5.Отказ от рассмотрения проблемы многокритериального выбора
- •11.6.Методы порогов сравнимости
- •11.7.Компромиссное распределение ресурсов между целями.
- •11.8.Метод деревьев решений
- •11.9.Метод решения многокритериальных задач при вычислимых критериях
- •12. Вербальный анализ решений и диалоговые методы принятия решений.
- •12.1. Особый класс задач принятия решений: неструктуризованные проблемы с качественными переменными
- •12.2. Качественная модель лица, принимающего решения
- •12.2.1. Черты человеческой системы переработки информации
- •12.2.2. Особенности поведения человека при принятии решений
- •12.3. Какими должны быть методы анализа неструктуризованных проблем
- •12.4. Измерения
- •12.4.1. Качественные измерения
- •12.4.2. Сравнительные качественные оценки
- •12.5. Построение решающего правила
- •12.6. Проверка информации лпр на непротиворечивость
- •12.7. Обучающие процедуры
- •12.8. Получение объяснений
- •12.9. Основные характеристики методов вербального анализа решений
- •12.10. Метод запрос (зАмкнутые пРоцедуры у Опорных Ситуаций)
- •12.10.1. Постановка задачи
- •12.10.2. Пример: как оценить проекты?
- •12.11. Выявление предпочтений лпр
- •12.11.1.Единая порядковая шкала для двух критериев
- •12.11.2.Проверка условия независимости для двух критериев
- •12.11.3.Независимость по понижению качества для группы критериев
- •12.11.4.Единая порядковая шкала оценок всех критериев
- •12.11.5.Проверка информации лпр на непротиворечивость
- •12.11.6.Частный случай
- •12.11.7. Психологическая корректность процедуры выявления предпочтений лпр
- •12.12.Сравнение альтернатив.
- •12.12.1.Упорядочение группы заданных альтернатив
- •12.13. Преимущества метода запрос
- •12.13.1. Практическое применение метода запрос
- •12.14. Сравнение трех сппр
- •12.15.Выводы
- •13.Функция полезности.
- •14. Принятие решений в условиях неопределенности.
- •15. Статические модели принятия единичных решений в условиях определенности.
- •15.1. Метод сравнительного учета затрат.
- •15.2. Метод сравнительного учета прибыли.
- •15.3. Метод сравнительного учета рентабельности.
- •15.4. Метод статических амортизационных расчетов.
- •16.Сущность глобального и локального критериев оптимальности.
- •17.Критерии принятия решений.
- •17.1. Критерий Байеса-Лапласа.
- •17.2.Составной критерий Байеса-Лапласа минимаксный.
- •17.3.Критерий Гермейера.
- •17.4. Критерий Сэвиджа.
- •17.5.Критерий Гурвица.
- •17.6.Критерий произведений.
- •18.Принятие коллективных решений.
- •18.1.Плюсы и минусы коллективных решений, современные концепции группового выбора.
- •18.2. Теорема Эрроу о невозможности. Анализ предпосылок теоремы Эрроу.
- •18.3.Правило Кондорсе.
- •18.4.Правило Борда.
- •19.Принятие решений в условиях нечеткой информации.
- •19.1.Зачем нужны нечеткие множества.
- •19.2. Операции над нечеткими множествами.
- •19.3. Задача достижения нечетко определенной цели.
- •19.4.Нечеткие отношения и их свойства.
- •19.4.1.Основные определения.
- •19.4.2.Операции над нечеткими отношениями.
- •19.4.3.Свойства нечетких отношений.
- •19.4.4.Декомпозиция нечетких отношений.
- •19.4.5.Транзитивное замыкание нечетких отношений.
- •19.4.6.Проекции нечетких отношений.
- •20.2.Кооперативные игры.
- •20.3. Дифференциальная игра.
- •20.4. Платежная матрица. Цена игры. Принципы максимина и минимакса.
- •20.5. Решение игры в смешанных стратегиях. Основная теорема теории матричных игр.
- •20.6.Сведение матричной игры к задаче линейного программирования.
- •21. Методы безусловной оптимизации
- •21.1 Классификация методов безусловной оптимизации.
- •21.2 Скорости сходимости.
- •21.3 Методы первого порядка.
- •21.4 Метод наискорейшего спуска
- •21.5 Методы сопряженных градиентов.
- •21.6 Градиентные методы.
- •21.7 Методы второго порядка.
- •21.8 Метод Ньютона и его модификации.
- •21.9 Модифицированный метод Ньютона.
- •21.10 Метод секущих.
- •21.11 Квазиньютоновские методы. Методы переменной метрики.
- •21.12 Конечно-разностная аппроксимация производных. Конечно-разностные методы.
- •21.12.1 Постановка задачи.
- •21.12.2 Общая схема.
- •21.12.3 Устойчивость схемы.
- •21.12.4 Повышение порядка аппроксимации.
- •21.12.5 О решении разностных схем.
- •21.12.6 Нелинейные задачи.
- •21.13 Методы нулевого порядка.
- •21.13.1 Основные определения
- •21.13.2 Общая характеристика методов нулевого порядка
- •21.14 Метод покоординатного спуска
- •21.15 Метод Хука—Дживса
- •21.16 Метод сопряженных направлений.
- •21.17 Методы деформируемых конфигураций.
- •21.18 Симплексные методы.
- •21.19 Комплекс-методы.
- •21.20 Решение задач многокритериальной оптимизации методами прямого поиска.
- •21.20.1 Модифицированный поиск Хука-Дживса
- •21.20.2 Методы случайного поиска
- •22. Задачи с ограничением (условная оптимизация)
- •22.1 Основные подходы к решению задач с ограничениями. Классификация задач и методов.
- •22.2 Метод проекции градиента.
- •22.3 Метод условного градиента.
- •22.4 Методы сведения задач с ограничениями к задачам безусловной оптимизации. Методы возможных направлений
- •22.4.1 Метод Зойтендейка
- •22.4.2 Метод возможных направлений для нелинейных ограничений-неравенств и равенств
- •22.4.3 Модификация метода возможных направлений
- •22.5 Методы штрафных функций
- •22.5.1 Методы внутренних штрафных функций
- •22.5.2 Методы внешних штрафных функций
- •22.6 Комбинированные алгоритмы штрафных функций
- •23. Стохастичесоке программирование
- •23.1 Задачи стохастического программирования. Прямые и непрямые методы.
- •23.2 Прямые методы. Стохастические квазиградиентные методы. Метод проектирования стохастических квазиградиентов.
- •23.3 Прямые методы. Метод стохастической аппроксимации
- •23.4 Прямые методы. Методы случайного поиска. Статистические методы поиска нелинейного программирования
- •23.5 Стохастические разностные методы. Методы конечных разностей в стохастическом программировании.
- •Статистические методы поиска нелинейного программирования
- •23.6 Стохастические задачи с ограничениями вероятностей природы.
- •24. Дискретное программирование
- •24.1 Методы и задачи дискретного программирования. Задачи целочисленного линейного программирования.
- •24.1.1 Задачи с неделимостями
- •24.1.2 Задача о рюкзаке.
- •24.1.3 Экстремальные комбинаторные задачи
- •24.1.4 Задача о коммивояжере.
- •24.1.5 Задача о покрытии.
- •24.1.6 Задачи на несвязных областях.
- •24.1.7 Задачи на невыпуклых областях.
- •24.1.8 Задачи с разрывными целевыми функциями
- •24.1.9 Задачи, сводящиеся к целочисленным
- •24.2 Методы отсечения Гомори.
- •24.3 Метод ветвей и границ.
- •24.4 Метод ветвей и границ для задачи целочисленного программирования
- •24.5 Задача о назначениях.
- •24.6 Венгерский алгоритм.
- •24.6.1 Венгерский метод для задачи о назначениях. Постановка задачи.
- •24.6.2 Описание алгоритма венгерского метода
- •24.6.3 Пример решения задачи о назначених венгерским алгоритмом.
- •24.7 Задачи оптимизации на сетях и графах.
- •Метод итераций по критерию
- •Метод итераций по стратегиям (в пространстве стратегий)
- •Минимизация средних затрат.
- •Пример 24.1
- •Пример 24.2.
- •25. Динамическое программирование
- •25.1 Метод динамического программирования для многошаговых задач принятия решений.
- •25.2 Принцип оптимальности Беллмана
- •25.3 Основное функциональное уравнение.
- •25.4 Вычислительная схема метода динамического программирования.
- •26. Общие положения о системном анализе.
- •27. Задача математического программирования.
- •27.1. Формы записи задач нечеткого математического программирования.
- •27.2. Классификация методов нелинейного математического программирования.
- •28. Линейное программирование.
- •28.1. Общие положения.
- •28.2. Геометрическая интерпретация множества решений системы линейных неравенств с 2 неизвестными.
- •28.3. Постановка задачи линейного программирования и двойственная задача линейного программирования.
- •28.3.1. Стандартная задача лп.
- •28.3.2. Каноническая задача лп.
- •28.3.3. Общая задача лп.
- •28.3.4. Двойственная задача линейного программирования.
- •28.3.5. Теорема двойственности.
- •28.3.6. Теорема равновесия.
- •28.4. Решение систем линейных неравенств. Гиперплоскость и полупространство.
- •28.5. Основные теоремы линейного программирования. Допустимые множества и оптимальные решения задач линейного программирования.
- •28.6. Симплексный метод решения задачи линейного программирования.
- •28.7. Условия существования и свойства оптимальных решений задачи линейного программирования.
- •28.7.1. Оптимальные решения.
- •28.7.2. Необходимые и достаточные условия оптимальности решения.
- •28.7.2.1. Нелинейное программирование без ограничений.
- •28.7.2.2. Нелинейное программирование с ограничениями в виде равенств и неравенств.
- •29. Двойственность в линейном программировании.
- •29.1. Общие положения.
- •29.2. Несимметричные двойственные задачи. Теорема двойственности.
- •29.3. Симметричные двойственные задачи.
- •29.4. Виды математических моделей двойственных задач.
- •29.5. Двойственный симплексный метод.
- •30.1.3. Классические способы отыскания решения экстремальных задач.
- •30.1.4. Условие регулярности.
- •30.1.5. Функция Лагранжа. Условия оптимальности.
- •30.1.6. Теорема Куна-Таккера.
- •30.1.7. Дифференциальные условия Куна-Таккера.
- •30.1.8. Общая схема решения задачи выпуклого программирования.
- •30.2. Выпуклые множества и функции.
- •30.3. Поиск экстремума функции.
- •31. Задача нелинейного программирования при ограничениях в неравенствах.
- •31.1. Теорема Куна-Таккера.
- •31.2. Седловая точка и задача нелинейного программирования.
- •31.3. Применение теоремы Куна-Таккера для задачи выпуклого программирования.
- •Список использованных источников
26. Общие положения о системном анализе.
Одним из важнейших этапов системного анализа является процесс принятия решения (процесс выбора). Выбор является действием, придающим всей деятельности целенаправленность. Именно выбор реализует подчиненность всей деятельности определенной цели или совокупности целей. Рано или поздно наступает момент, когда дальнейшие действия могут быть различными, приводящими к разным результатам, а реализовать можно только одно действие, причем вернуться к ситуации, имевшей место в этот момент, уже (как правило) нельзя. Естественно стремление понять, что такое "хороший выбор", выработать рекомендации, как приблизиться к наилучшему решению, а если возможно, то и предложить алгоритм получения такого решения. Работа многих исследователей в этом направлении выявила характерную ситуацию, типичную для моделирования (в данном случае - моделирования процессов принятия решений): полная формализация нахождения наилучшего решения возможна, но лишь для хорошо изученных (хорошо структурированных) задач; для решения слабо структурированных задач полностью формальных алгоритмов не существует (если не считать тривиального и далеко не всегда приемлемого алгоритма перебора, т.е. метода проб и ошибок), но опытные и способные специалисты часто делают выбор, оказывающийся хорошим. Современная тенденция практики выбора в естественных ситуациях состоит в сочетании способности человека решать неформализованные задачи с возможностями формальных методов и компьютерного моделирования (например, диалоговые системы поддержки решений, экспертные системы, информационно-поисковые системы, системы управления базами данных, автоматизированные системы управления и т.п.).
Задачи выбора чрезвычайно многообразны, различны и методы их решения. Прежде всего, введем понятия, общие для всех задач выбора. Будем представлять принятие решения как действие над множеством альтернатив, в результате которого получается подмножество выбранных альтернатив (обычно это одна альтернатива, что не обязательно, а иногда и невозможно). Сужение множества альтернатив возможно, если имеется способ сравнения альтернатив между собой и определения наиболее предпочтительных. Каждый такой способ будем называть критерием предпочтения. Обратим внимание на то, что при таком описании выбора считают сами собой разумеющимися, уже пройденными, два чрезвычайно важных этапа:
1) порождение множества альтернатив, на котором предстоит осуществлять выбор;
2) определение целей, ради достижения которых производится выбор.
В практике системного анализа реализация этих этапов связана с определенными трудностями, для преодоления которых необходимы свои приемы и методы.
Множественность задач выбора. Даже в такой упрощенной постановке проблема выбора не тривиальна и допускает существенно различающиеся математические постановки задач. Дело в том, что каждая компонента ситуации выбора может реализовываться в качественно различных вариантах. Отметим основные варианты:
множество альтернатив может быть конечным, счетным или континуальным;
оценка альтернативы может осуществляться по одному или по нескольким критериям, которые в свою очередь могут иметь как количественный, так и качественный характер;
режим выбора может быть однократным (разовым) или повторяющимся, допускающим обучение на опыте;
последствия выбора могут быть точно известны (выбор в условиях определенности), иметь вероятностный характер, когда известны вероятности возможных исходов после сделанного выбора (выбор в условиях риска), или иметь неоднозначный исход, не допускающий введения вероятностей (выбор в условиях неопределенности);
ответственность за выбор может быть односторонней (в частном случае индивидуальной) или многосторонней. Соответственно различают индивидуальный и групповой выбор;
степень согласованности целей при многостороннем выборе может варьироваться от полного совпадения интересов сторон (кооперативный выбор) до их противоположности (выбор в конфликтной ситуации). Возможны также промежуточные случаи, например компромиссный выбор, коалиционный выбор, выбор в условиях нарастающего конфликта и т.д. Различные сочетания перечисленных вариантов и приводят к многообразным задачам выбора, которые изучены не в одинаковой степени. Дадим краткий обзор состояния теории выбора в настоящее время, а также рассмотрим некоторые подходы к решению слабо формализованных задач выбора. При этом главное внимание будем уделять постановке задач и важным результатам и лишь упоминать, какие именно теории дают методы решения (теория оптимизации, исследование операций, вариационное исчисление, математическое программирование, теория игр, математическая статистика и т.д.)
Критериальный язык описания выбора. На примере описания выбора видно, как об одном и том же явлении можно говорить на языках различной общности. К настоящему моменту сложилось три основных языка описания выбора. Самым простым, наиболее развитым (и, быть может, поэтому чаще употребляемым в приложениях) является критериальный язык. Это название связано с основным предположением, состоящим в том, что каждую отдельно взятую альтернативу можно оценить конкретным числом (значением критерия), и сравнение альтернатив сводятся к сравнению соответствующих им чисел. Пусть x - некоторая альтернатива из множества X. Считается, что для всех х ∈ Х может быть задана функция q(x), которая называется критерием (критерием качества, целевой функцией, функцией предпочтения, функцией полезности и т.д.) и обладает тем свойством, что если альтернатива х1 предпочтительнее альтернативы x2 (будем обозначать это х1> x2), то q(x1) >q(x2) и обратно.
Выбор как максимизация критерия. Если теперь сделать еще одно важное предположение, что выбор любой альтернативы приводит к однозначно известным последствиям (т.е. считать, что выбор осуществляется в условиях определенности) и заданный критерий q(x) численно выражает оценку этих u1087 последствий, то наилучшей альтернативой х* является, естественно, та, которая обладает наибольшим значением критерия:
Задача отыскания х*, простая по постановке, часто оказывается сложной для решения. Так как метод ее решения (да и сама возможность решения) определяется характером множества Х (размерностью вектора х и типом множества Х - является ли оно конечным, счетным или континуальным) и характером критерия (является ли q(x) функцией или функционалом и какой или каким именно). К этому классу моделей относятся модели линейного и нелинейного программирования. Однако сложность отыскания наилучшей альтернативы существенно возрастает, так как на практике оценивание любого варианта единственным числом обычно оказывается неприемлемым упрощением. Более полное рассмотрение альтернатив приводит к необходимости оценивать их не по одному, а по нескольким критериям, качественно различающимся между собой.
Итак, пусть для оценивания альтернатив используется несколько критериев q i (x), i = 1, ..., р. Теоретически можно представить себе случай, когда во множестве Х окажется одна альтернатива, обладающая наибольшими значениями всех р критериев; она и является наилучшей. Однако на практике такие случаи почти не встречаются, и возникает вопрос, как же тогда осуществлять выбор.
Сведение многокритериальной задачи к однокритериальной. Рассмотрим наиболее употребительные способы решения многокритериальных задач. Первый способ состоит в том, чтобы многокритериальную задачу свести к однокритериальной. Это означает введение суперкритерия, т.е. скалярной функции векторного аргумента: q0(x)= q0 (q1(x),q1(x),..., qp(x)). Суперкритерий позволяет упорядочить альтернативы по величине выделив тем самым наилучшую (в смысле этого критерия). Вид функции q0 определяется тем, как мы представляем себе вклад каждого критерия в суперкритерий; обычно используют аддитивные или мультипликативные функции:
Коэффициенты si обеспечивают, во-первых, безразмерность числа qi / si (частные критерии могут иметь разную размерность, и тогда некоторые арифметические операции над ними, например сложение, не имеют смысла) и, во-вторых, в необходимых случаях выполнение условия βi qi / si =< 1 Коэффициенты αi, и βi отражают относительный вклад частных критериев в суперкритерий. Итак, при данном способе задача сводится к максимизации суперкритерия:
Очевидные достоинства объединения нескольких критериев в один суперкритерий сопровождаются рядом трудностей и недостатков, которые необходимо учитывать при использовании этого метода. Условная максимизация Недостатки свертывания нескольких критериев заставляют искать другие подходы к решению задач многокритериального выбора. Рассмотрим второй способ решения таких задач. Он заключается в ином, нежели при свертывании, использовании того факта, что частные критерии обычно неравнозначны между собой (одни из них более важны, чем другие). Наиболее явное выражение этой идеи состоит в выделении основного, главного критерия и рассмотрении остальных как дополнительных, сопутствующих. Такое различие критериев позволяет сформулировать задачу выбора как задачу нахождения условного экстремума основного критерия:
при условии, что дополнительные критерии остаются на заданных им уровнях. В некоторых задачах оказывается возможным или даже необходимым задавать ограничения на сопутствующие критерии не столь жестко. Например, если сопутствующий критерий характеризует стоимость затрат, то вместо фиксации затрат разумнее задавать их верхний уровень, т.е. формулировать задачу с ограничениями типа неравенств:
В данных вариантах различие между основным и дополнительными критериями выглядит слишком сильным. Иную постановку задачи дает метод уступок. Пусть частные критерии упорядочены в порядке убывания их важности.
Возьмем первый из них и найдем наилучшую по этому критерию альтернативу. Затем определим "уступку" ∆i т.е. величину, на которую мы согласны уменьшить достигнутое значение самого важного критерия, чтобы за счет уступки попытаться увеличить, насколько возможно, значение следующего по важности критерия, и т.д.
Нахождение паретовского множества. Еще один полностью формализуемый способ многокритериального выбора состоит в отказе от выделения единственной "наилучшей" альтернативы и соглашении о том, что предпочтение одной альтернативе перед другой можно отдавать только если первая по всем критериям лучше второй.. Если же предпочтение хотя бы по одному критерию расходится с предпочтением по другому, то такие альтернативы признаются несравнимыми. В результате попарного сравнения альтернатив все худшие по всем критериям альтернативы отбрасываются, а все оставшиеся несравнимые между собой (недоминируемые) принимаются. Если все максимально достижимые значения частных критериев не относятся к одной и той же альтернативе, то принятые альтернативы образуют множество Парето и выбор на этом заканчивается. При необходимости же выбора единственной альтернативы следует привлекать дополнительные соображения: вводить новые добавочные критерии и ограничения, либо бросать жребий, либо прибегать к услугам экспертов.
Здесь были рассмотрены наиболее употребительные способы описания выбора в терминах критериального языка.
