Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
л-2.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
60.04 Кб
Скачать

Взаимодействие лекарственных препаратов

В настоящее время монотерапия, то есть терапия только одним каким-либо препаратом, встречается редко. В большинстве случаев больному назначаются два, три и более лекарств одновременно. Связано это бывает либо с тем, что пы­таются повысить эффект одного лекарства другим, либо пытаются уменьшить побочные эффекты препарата другим веществом. При этом препараты могут не оказывать никакого влияния друг на друга, а могут проявлять различные вариан­ты взаимодействия. Эти взаимодействия могут быть фармакодинамическими (влияние на механизм развития фармакологического эффекта) и фармакокинети-ческими (влияние на различные этапы фармакокинетики лекарства). При комби­нированной фармакотерапии возможны следующие варианты взаимодействия лекарств друг с другом:

1. Синергизм - однонаправленное действие лекарств, то есть при совмест­ном применении эффект препаратов повышается. Синергизм может быть сле­дующих двух видов:

а) суммирование - конечный эффект совместного применения препаратов равен сумме эффектов каждого из них в отдельности. Обычно по принципу сум­мирования действуют препараты, имеющие сходный механизм действия, единую точку приложения. Используют этот метод обычно для того, чтобы уменьшить дозу каждого препарата в комбинации с целью уменьшения вероятности появле­ния побочных эффектов.

б) потенцирование - эффект комбинированного применения препаратов значительно больше, чем простая сумма эффектов каждого из них в отдельности. Таким образом действуют обычно препараты, вызывающие один и тот же эффект разными механизмами. Это действие используется, как правило, для получения более выраженного фармакологического эффекта.

2. Антагонизм - противоположное действие лекарств, при совместном применении эффект какого-либо препарата из комбинации снижается. Очень часто используется для предупреждения или исключения побочных эффектов лекарства или при лекарственных и нелекарственных отравлениях. Возможными вариантами антагонизма являются:

а) физико-химический антагонизм - взаимодействие лекарств происходит на уровне физического или химического взаимодействия и может происходить независимо от живого организма. Примером физического взаимодействия ле­карств является процесс адсорбции крупномолекулярных токсинов, попавших в желудок, на молекулах активированного угля, вместе с которым они и выводятся затем из организма. Примером химического взаимодействия является лечение растворами слабой кислоты при отравлении щелочами или, наоборот, раствора­ми слабых щелочей при отравлении кислотами (реакция нейтрализации).

б) физиологический - этот вариант антагонизма может происходить только в организме в результате воздействия препаратов на определенные функции. Раз­личают следующие варианты физиологического антагонизма:

По точке приложения выделяют

  • прямой антагонизм - два вещества действуют противоположно на одну и ту же систему, на один и тот же рецептор, место действия. Пример: влияние на то­нус гладких мышц кишечника пилокарпина (М-холиномиметик) и атропина (М-холиноблокатор).

  • непрямой антагонизм - два вещества оказывают противоположные эффекты за счет воздействия на разные точки приложения, разные рецепторы, разные системы организма. Пример: влияние на ритм сердечных сокращений адреналина (адреномиметик) и атропина (холиноблокатор). По направленности действия выделяют

  • двухсторонний (конкурентный) антагонизм, в основе конкурентное взаимо­отношение лекарств за одну и ту же точку приложения. Препараты взаимно сни­мают эффекты друг друга при повышении концентрации какого-либо из них возле точки приложения. По этому принципу работают сульфаниламидные пре­параты, которые оказывают свое антибактериальное действие за счет конкурент­ного антагонизма с парааминобензойной кислотой, необходимой микробу для синтеза клеточной стенки.

  • односторонний антагонизм: один из препаратов оказывает более сильное влияние, поэтому способен снимать и предупреждать действие второго, но не наоборот. Атропин является антагонистом пилокарпина, но пилокарпин не явля­ется антагонистом атропина.

По выраженности различают:

  • полный антагонизм, когда все эффекты одного препарата, снимаются или предупреждаются другим, и ... .,

  • частичный антагонизм, когда препарат снимает или предупреждает лишь часть эффектов другого препарата. Например, наркотический анальгетик морфин кроме сильного обезболивающего действия обладает спазмогенным действием на гладкую мускулатуру, что может привести к резкому сужению желче- и мочевыводящих путей. Для предупреждения этого эффекта вместе с морфином вводят атропин, который не влияет на обезболивающее действие морфина, но преду­преждает его спазмогенный эффект.

3. Несовместимость лекарств, то есть нецелесообразность совместного применения данных лекарств, поскольку в результате резко изменяются свойства одного из них или обоих. Несовместимость может быть в результате химическо­го взаимодействия препаратов в одной лекарственной форме (выпадение осадков, образование не всасывающихся комплексов и др.). Несовместимость может быть и биологическая, например, при применении глазной ртутной мази одновременно с препаратами йода последний, выделяясь слизистой конъюнктивы, образует токсическое соединение - двуйодистую ртуть, которая нарушает прозрачность роговой оболочки глаза.

Фармакологические эффекты большинства лекарственных веществ вызываются их действием на определенные биохимические субстраты, так называемые «мишени».

К основным «мишеням» для лекарственных веществ относятся:

  • рецепторы;

  • ионные каналы;

  • ферменты;

  • транспортные системы.

Мембранные рецепторы делят на:

1) Рецепторы, сопряженные с ионными каналами( N-холинорецепторы и ГАМКА -рецепторы.), При стимуляции N-холинорецепторов (никотиночувствительные холинорецепторы) открываются сопряженные с ними натриевые каналы. Вход ионов Na+ в клетку обусловливает деполяризацию клеточной мембраны и возбудительный эффект.

ГАМКА -рецепторы непосредственно сопряжены с хлорными ка­налами. Стимуляция ГАМКА-рецепторов ведет к открытию Сl--каналов, входу ионов Сl-, гиперполяризации клеточной мембраны и тормозному эффекту

2) рецепторы, сопряженные с ферментами, (рецепторы инсулина, сопряженные с тирозинкиназой.)

3) рецепторы, взаимодействующие с G-белками.

М-холинорецепторы (мускариночувствительные холинорецепторы), адренорецепторы, дофаминовые рецепторы, опиоидные рецепторы и др.

G-белки, т.е. ГТФ-связывающие белки, локализованы в клеточ­ной мембране и состоят из α-β-γ-,субъединиц. При взаимодей­ствии лекарственного вещества с рецептором α -субъединица G-белка соединяется с ГТФ (GTP) и воздействует на ферменты или ионные . каналы. Один рецептор взаимодействует с несколькими G-белка­ми, а каждый комплекс а-субъединицы G-белка с ГТФ действует ;на несколько молекул фермента или на несколько ионных каналов. Таким образом осуществляется механизм амплифайера (усилите­ля): при активации одного рецептора изменяется активность мно­гих молекул фермента или многих ионных каналов.

Способность веществ связываться с рецепторами (тенденция ве­ществ к связыванию с рецепторами) обозначают термином «аффи­нитет». По отношению к одним и тем же рецепторам аффинитет разных веществ может быть различным. Для характеристики аффи­нитета используют показатель pKD - отрицательный логарифм кон­станты диссоциации, т.е. концентрации вещества, при которой за­нято 50% рецепторов.

Внутренняя активность - способность веществ стимулировать рецепторы; определяется по величине фармакологического эффек­та, связанного с активацией рецептора. В обычных условиях нет прямой корреляции между аффинитетом и внутренней активнос­тью: вещество может занимать все рецепторы и вызывать слабый эффект, и, наоборот, вещество может занимать 1% рецепторов и вызывать максимальный для данной системы эффект.

Агонисты — вещества, обладающие аффинитетом и внутренней активностью.

Полные агонисты обладают аффинитетом и максимальной внут­ренней активностью. Частичные (парциальные) агонисты обладают аффинитетом и менее, чем максимальной внутренней активностью.

Антагонисты обладают аффинитетом, не обладают внутренней активностью и препятствуют действию полных или частичных агонистов (вытесняют агонисты из связи с рецепторами). Если дей­ствие антагониста устраняется при повышении дозы агониста, та­кой антагонизм называют конкурентным.

Частичные агонисты могут быть антагонистами полных агонистов. В отсутствие полного агониста частичный агонист стимулиру­ет рецепторы и вызывает слабый эффект. При взаимодействии с полным агонистом частичный агонист занимает рецепторы и пре­пятствует действию полного агониста. Например, окспренолол — частичный агонист β -адренорецепторов в отсутствие влияний сим­патической иннервации на сердце вызывает слабую тахикардию. Но при повышении тонуса симпатической иннервации окспренолол действует, как настоящий β -адреноблокатор, и вызывает брадикардию. Это объясняется тем, что частичный агонист окспренолол уст­раняет действие медиатора норадреналина, который по отношению к β 1 -адренорецепторам сердца является полным агонистом.

Агонисты-антагонисты — вещества, которые по-разному действу­ют на подтипы одних и тех же рецепторов: одни подтипы рецепто­ров они стимулируют, а другие - блокируют. Например, наркоти­ческий анальгетик налбуфин по-разному действует на подтипы опиоидных рецепторов. Каппа-рецепторы налбуфин стимулирует (и поэтому снижает болевую чувствительность), а мю-рецепторы блокирует (и поэтому менее опасен в плане лекарственной зависи­мости).

Примером влияния веществ на ферменты может быть действие антихолинэстеразных средств которые блокируют ацетилхолинэстеразу (фермент, расщепляющий ацетилхолин) и таким об­разом усиливают и удлиняют действие ацетилхолина.

Известны лекарственные вещества, которые стимулируют или бло­кируют ионные каналы клеточных мембран, т.е. каналы, которые из­бирательно проводят ионы Na+, K+, Са2+ (натриевые, калиевые, каль­циевые каналы) и др. Например, местноанестезирующие и некоторые противоаритмические вещества (прокаин, хинидин) блокируют на­триевые каналы. В медицинской практике применяют блокаторы каль­циевых каналов, активаторы калиевых каналов.

Примером влияния веществ на транспортные системы может быть действие трициклических антидепрессантов, которые бло­кируют обратный транспорт норадреналина и серотонина через пре-синаптическую мембрану.

Доза - это количество лекарственного вещества, вводимого в организм для проявления действия. Дозы могут быть разовыми, суточными, курсовыми, терапевтическими, токсическими и др. Напомним, что, выписывая рецепт, мы всегда ориентируемся на средние терапевтические дозы препарата, которые всегда можно найти в справочниках.

Различают терапевтические, токсические и летальные дозы.

Выделяют следующие терапевтические дозы: минимальные дейст­вующие, средние терапевтические и высшие терапевтичес­кие дозы.

Минимальные действующие дозы (пороговые) вызывают мини­мальный терапевтический эффект. Обычно они в 2—3 раза меньше средней тера­певтической дозы.

Средние терапевтические дозы оказывают у большинства больных необходимое фармакотерапевтическое действие. Рассчитывают дозу лекарствен­ного вещества на один прием — разовую дозу (pro dosi), и дозу, которую боль­ной должен принять за сутки — суточную дозу (pro die). Поскольку индиви­дуальная чувствительность больных и тяжесть заболеваний могут варьировать, средние терапевтические дозы обычно выражают в виде предела доз (например, разовая доза диклофенака-натрия составляет 0,025-0,05 г).

Диапазон доз от минимальной действующей до высшей терапевтической оп­ределяется как широта терапевтического действия. Чем больше широта терапев­тического действия, тем безопаснее применение лекарственного средства.

Ударная доза

ВЛИЯНИЕ РАЗЛИЧНЫХ ФАКТОРОВ НА ФАРМАКОДИНАМИКУ И ФАРМАКОКИНЕТИКУ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ

К факторам, влияющим на действие лекарственных средств, относят свой­ства вещества (химическая структура, физико-химические свойства, дозы и концентрации лекарственных веществ), лекарственную форму и особенности ее технологии, с о с т о я н и е организма него индивидуальные особен­ности (пол, возраст, генетические факторы и др.), а также режим назна­чения и условия применения лекарственных веществ (повторное вве­дение, комбинированное применение, время суток, состояние внешней среды: время года, температура воздуха, атмосферное давление, экологическая обста­новка и т.д.).

Химическая структура лекарственных веществ определяет характер их действия (фармакологические эффекты) и фармакокинетические особенности. Вещества, близкие по химической структуре (вещества одной химической группы, напри­мер бензодиазепины, барбитураты, дигидропиридины), как правило, вызывают одинаковые фармакологические эффекты. Связано это в основном с тем, что вза­имодействие веществ с «мишенями» определяется их химическим строением, наличием функционально активных групп, пространственной ориентацией и раз­мером молекул.

Примером влияния комплементарности на действие лекарственных ве­ществ является различие в действии стереоизомеров, молекулы которых имеют противоположную пространственную ориентацию (являются зеркальными ото­бражениями друг друга). Гиосциамин, являющийся L-изомером, в 2 раза актив­нее атропина, который представляет смесь активного L- и малоактивного D-изо-меров. Значение имеет также расстояние между функционально активными группировками веществ.

Фармакокинетика и фармакодинамика лекарственных веществ зависит также от их физико-химические свойств: липофильности, гидрофильности, полярнос­ти, степени ионизации. Так, липофильность веществ определяет их способность проникать через гематоэнцефалический барьер и оказывать действие на ЦНС.

При увеличении дозы лекарственного вещества его действие повышается и через определенное время достигает максимальной (постоянной) величины (Етах). Поэтому при арифметической шкале доз зависимость доза-эффект имеет гипер­болический характер (градуальная зависимость). При логарифмической шкале доз эта зависимость выражается S-образной кривой (см. рис. 3.1). По величине дозы, вызывающей эффект определенной величины, судят об активности вещества. Обычно для этих целей на графике зависимости доза-эффект определяют дозу, которая вызывает 50%-й (полумаксимальный) эффект и обозначают ее как ЭД50

Свойства организма

К факторам, влияющим на действие лекарственных веществ, относятся пол, возраст, масса тела, состояние организма, генетические особенности.

http://www.medical911.ru/общая-фармакология-фармакодинамика/