- •1.Типы моделей и переменных, применяемых в эконометрике. Чем регрессионная модель отличается от функции регрессии?
- •60. Двухшаговый мнк. Всегда ли можно применить двухшаговый мнк?
- •2. Этапы эконометрического моделирования. Каковы основные причины наличия в регрессионной модели случайного отклонения?
- •59. Косвенный мнк. Всегда ли можно применить косвенный мнк?
- •3.Основные понятия теории вероятностей. Нормальное распределение и связанные с ним χ2 - распределение, распределение Стьюдента и Фишера.
- •58. Идентификация модели в системах одновременных уравнений.
- •4. Генеральная совокупность и выборка. Свойства статистических оценок.
- •57. Структурная и приведенная формы модели в системах одновременных уравнений.
- •56. Типы систем одновременных уравнений. В чем особенность системы рекурсивных уравнений?
- •6. Экономическая интерпретация параметров линейной модели парной регрессии. Какой смысл может иметь свободный коэффициент?
- •55. Arima-модель.
- •7. Статистический смысл коэффициента детерминации. Какова связь между линейным коэффициентом корреляции и коэффициентом регрессии в линейной модели парной регрессии?
- •54. Типы моделей нестационарных временных рядов.
- •8. Баланс для сумм квадратов отклонений результативного признака. В каком случае общая ско равна факторной? Что происходит, когда общая ско равна остаточной?
- •53. Типы моделей стационарных временных рядов.
- •9. Число степеней свободы. Чему равны числа степеней свободы для различных ско в парной регрессии?
- •52. Стационарность временного ряда. Какой стационарный процесс называется «белым шумом»?
- •10. Проверка нулевой гипотезы о статистической незначимости уравнения регрессии в целом. Как используется f-статистика в регрессионном анализе?
- •51. Модель arma. Как интерпретируют параметры моделей авторегрессии?
- •11. Проверка нулевой гипотезы о статистической незначимости параметров уравнения регрессии. Как рассчитать критерий Стьюдента для коэффициента регрессии в линейной модели парной регрессии?
- •50. Прогнозирование на основе трендовой и тренд-сезонной моделей временных рядов. Чему равна сумма сезонных компонент в аддитивной модели временного ряда?
- •12. "Грубое" правило анализа статистической значимости коэффициентов регрессии. Какая связь между tb- и f- статистиками в парной линейной регрессии?
- •49. Этапы построения тренд-сезонных моделей временных рядов. В чем отличие аддитивной и мультипликативной моделей временных рядов?
- •13. Схема определения интервальных оценок коэффициентов регрессии.
- •48. Модель регрессии с фиксированным эффектом и модель регрессии со случайным индивидуальным эффектом. Оценивание модели со случайным индивидуальным эффектом.
- •14. Схема предсказания индивидуальных значений зависимой переменной. В каком месте доверительный интервал прогноза по парной модели является наименьшим?
- •47. Основные понятия и характеристики панельных данных.
- •15. Спецификация эмпирического уравнения линейной модели множественной регрессии. Что измеряют коэффициенты регрессии линейной модели множественной регрессии?
- •46. Прогноз вероятности по логит-модели. Прогноз вероятности по пробит-модели.
- •45. Проверка значимости коэффициентов в модели бинарного выбора?
- •44. Логит-модели и пробит–модели. Какова интерпретация коэффици-ентов моделей бинарного выбора?
- •18. Способы оценивания параметров регрессии в условиях мультиколлинеарности.
- •43. Замещающие переменные в регрессионных моделях.
- •19. Стандартизованный вид линейной модели множественной регрессии: форма записи и практическое применение. Как связаны стандартизованные коэффициенты регрессии с натуральными?
- •42. Исключение существенных переменных и включение несущественных переменных.
- •20. Скорректированный коэффициент детерминации. В чем недостаток использования коэффициента детерминации при оценке общего качества ли-нейной модели множественной регрессии?
- •41. Показатели корреляции при нелинейных соотношениях рассматриваемых признаков. Смысл средней ошибки аппроксимации.
- •21. Назначение частной корреляции при построении модели множе-ственной регрессии.
- •40. Коэффициенты эластичности в нелинейных регрессионных моделях.
- •22. Смысл и определение индекса множественной корреляции.
- •39. Индекс корреляции. Подбор линеаризующего преобразования (подход Бокса-Кокса).
- •23. Способы отбора факторов для включения в линейную модель множественной регрессии.
- •38. Линеаризация нелинейных моделей. Выбор формы модели.
- •24. Проверка обоснованности исключения части переменных из уравнения регрессии.
- •37. Классы и виды нелинейных регрессий.
- •25. Проверка обоснованности включения группы новых переменных в уравнение регрессии.
- •36. Тест Чоу в моделях с фиктивными переменными.
- •26. Частный f-критерий. Чем он отличается от последовательного f-критерия?
- •35. Смысл дифференциального свободного члена и дифференциального углового коэффициента в моделях с фиктивными переменными. ???
- •27. Гомоскедастичности и гетероскедастичности остатков регрессии. Каковы последствия гетероскедастичности остатков регрессии?
- •34. Правило применения фиктивных переменных. Ловушка фиктивных переменных.
- •28. Способы обнаружения гетероскедастичности остатков регрессии. Какие критерии могут быть использованы для проверки гипотезы о гомоскедастичности регрессионных остатков?
- •29. Способы устранения гетероскедастичности остатков регрессии. Метод взвешенных наименьших квадратов.
- •30. Автокорреляция случайных отклонений. Каковы основные причины и последствия автокорреляции?
- •31. Основные методы обнаружения автокорреляции.
41. Показатели корреляции при нелинейных соотношениях рассматриваемых признаков. Смысл средней ошибки аппроксимации.
Индекс
корреляции
- нормированный
показатель тесноты связи. Коэффициент
индекса корреляции показывает долю
общей вариации зависимой переменной,
обусловленной регрессией или изменчивостью
объясняющей переменной. Чем
ближе индекс корреляции к 1
,
тем теснее
связь рассматриваемых признаков, тем
более надежно найденное уравнение
регрессии.
общая
дисперсия результативного признака
y,
остаточная
дисперсия, определяемая по уравнению
нелинейной регрессии.
Фактические значения результативного признака отличаются от теоретических, рассчитанных по уравнению регрессии, т.е. у и ŷ. Чем меньше эти отличия, тем ближе теоретические значения к эмпирическим данным, тем лучше качество модели.
Ошибка аппроксимации - Величина отклонений фактических и расчетных значений результативного признака (у-ŷх) по каждому наблюдению. В отдельных случаях ошибка
аппроксимации может оказаться равной нулю. Отклонения (у–ŷх) несравнимы между собой, исключая величину, равную нулю.
Поскольку (у–ŷх) может быть величиной как положительной, так и отрицательной, ошибки аппроксимации для каждого наблюдения принято определять в процентах по модулю.
Отклонения (у–ŷх) можно рассматривать:
- как абсолютную ошибку аппроксимации
– как относительную ошибку аппроксимации. Для того чтобы иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению, находят среднюю ошибку аппроксимации как среднюю арифметическую простую.
21. Назначение частной корреляции при построении модели множе-ственной регрессии.
Ранжирование факторов, участвующих во множественной
линейной регрессии, может быть проведено через стандартизованные коэффициенты
регрессии, с помощью частных коэффициентов корреляции — для линейных связей.
Кроме того, частные показатели корреляции широко используются при решении проблемы отбора факторов: целесообразность включения того или иного фактора в модель доказывается величиной показателя частной корреляции.
Частные коэффициенты корреляции характеризуют тесноту
связи между результатом и соответствующим фактором при устранении влияния
других факторов, включенных в уравнение регрессии.
Показатели частной корреляции - отношение сокращения
остаточной дисперсии за счет дополнительного включения в анализ нового
фактора к остаточной дисперсии, имевшей место до введения его в модель.
Частные коэффициенты корреляции измеряющие влияние на у фактора хi
при неизменном уровне др. факторов можно определить по формуле:
где
– множественный
коэффициент детерминации двухфакторной
модели регрессии;
При двух факторах и i=1 данная формула примет вид:
Частные коэффициенты корреляции изменяются в пределах от -1 до 1.
40. Коэффициенты эластичности в нелинейных регрессионных моделях.
Величина
коэффициента эластичности показывает,
на сколько процентов изменится
результативный признак Y, если факторный
признак изменится на 1 %:
,
где f’(x) – первая производная.
Для
большинства нелинейных функций
коэффициент эластичности не является
постоянной величиной, а зависит от
соответствующего значения фактора
,потому
обычно рассчитывается средний коэффициент
эластичности:
В других функциях коэффициент эластичности зависит от значения фактора х. Так, для линейной регрессии у=а+bх коэффициент эластичности определяется по формуле:
Э=
4.15.
так
как
В силу того, что для линейной функции коэффициент эластичности не является величиной постоянной, а зависит от соответствующего значения х, то обычно рассчитывается средний показатель эластичности по формуле
Возможны случаи когда расчет коэффициентов эластичности экономического смысла не имеет. Это происходит, когда для рассматриваемых признаков бессмысленно определение изменения значений в %. Например, не имеет смысла определять в % признаки: возраст, число комнат, тарифный разряд рабочего и др.
