- •1.Типы моделей и переменных, применяемых в эконометрике. Чем регрессионная модель отличается от функции регрессии?
- •60. Двухшаговый мнк. Всегда ли можно применить двухшаговый мнк?
- •2. Этапы эконометрического моделирования. Каковы основные причины наличия в регрессионной модели случайного отклонения?
- •59. Косвенный мнк. Всегда ли можно применить косвенный мнк?
- •3.Основные понятия теории вероятностей. Нормальное распределение и связанные с ним χ2 - распределение, распределение Стьюдента и Фишера.
- •58. Идентификация модели в системах одновременных уравнений.
- •4. Генеральная совокупность и выборка. Свойства статистических оценок.
- •57. Структурная и приведенная формы модели в системах одновременных уравнений.
- •56. Типы систем одновременных уравнений. В чем особенность системы рекурсивных уравнений?
- •6. Экономическая интерпретация параметров линейной модели парной регрессии. Какой смысл может иметь свободный коэффициент?
- •55. Arima-модель.
- •7. Статистический смысл коэффициента детерминации. Какова связь между линейным коэффициентом корреляции и коэффициентом регрессии в линейной модели парной регрессии?
- •54. Типы моделей нестационарных временных рядов.
- •8. Баланс для сумм квадратов отклонений результативного признака. В каком случае общая ско равна факторной? Что происходит, когда общая ско равна остаточной?
- •53. Типы моделей стационарных временных рядов.
- •9. Число степеней свободы. Чему равны числа степеней свободы для различных ско в парной регрессии?
- •52. Стационарность временного ряда. Какой стационарный процесс называется «белым шумом»?
- •10. Проверка нулевой гипотезы о статистической незначимости уравнения регрессии в целом. Как используется f-статистика в регрессионном анализе?
- •51. Модель arma. Как интерпретируют параметры моделей авторегрессии?
- •11. Проверка нулевой гипотезы о статистической незначимости параметров уравнения регрессии. Как рассчитать критерий Стьюдента для коэффициента регрессии в линейной модели парной регрессии?
- •50. Прогнозирование на основе трендовой и тренд-сезонной моделей временных рядов. Чему равна сумма сезонных компонент в аддитивной модели временного ряда?
- •12. "Грубое" правило анализа статистической значимости коэффициентов регрессии. Какая связь между tb- и f- статистиками в парной линейной регрессии?
- •49. Этапы построения тренд-сезонных моделей временных рядов. В чем отличие аддитивной и мультипликативной моделей временных рядов?
- •13. Схема определения интервальных оценок коэффициентов регрессии.
- •48. Модель регрессии с фиксированным эффектом и модель регрессии со случайным индивидуальным эффектом. Оценивание модели со случайным индивидуальным эффектом.
- •14. Схема предсказания индивидуальных значений зависимой переменной. В каком месте доверительный интервал прогноза по парной модели является наименьшим?
- •47. Основные понятия и характеристики панельных данных.
- •15. Спецификация эмпирического уравнения линейной модели множественной регрессии. Что измеряют коэффициенты регрессии линейной модели множественной регрессии?
- •46. Прогноз вероятности по логит-модели. Прогноз вероятности по пробит-модели.
- •45. Проверка значимости коэффициентов в модели бинарного выбора?
- •44. Логит-модели и пробит–модели. Какова интерпретация коэффици-ентов моделей бинарного выбора?
- •18. Способы оценивания параметров регрессии в условиях мультиколлинеарности.
- •43. Замещающие переменные в регрессионных моделях.
- •19. Стандартизованный вид линейной модели множественной регрессии: форма записи и практическое применение. Как связаны стандартизованные коэффициенты регрессии с натуральными?
- •42. Исключение существенных переменных и включение несущественных переменных.
- •20. Скорректированный коэффициент детерминации. В чем недостаток использования коэффициента детерминации при оценке общего качества ли-нейной модели множественной регрессии?
- •41. Показатели корреляции при нелинейных соотношениях рассматриваемых признаков. Смысл средней ошибки аппроксимации.
- •21. Назначение частной корреляции при построении модели множе-ственной регрессии.
- •40. Коэффициенты эластичности в нелинейных регрессионных моделях.
- •22. Смысл и определение индекса множественной корреляции.
- •39. Индекс корреляции. Подбор линеаризующего преобразования (подход Бокса-Кокса).
- •23. Способы отбора факторов для включения в линейную модель множественной регрессии.
- •38. Линеаризация нелинейных моделей. Выбор формы модели.
- •24. Проверка обоснованности исключения части переменных из уравнения регрессии.
- •37. Классы и виды нелинейных регрессий.
- •25. Проверка обоснованности включения группы новых переменных в уравнение регрессии.
- •36. Тест Чоу в моделях с фиктивными переменными.
- •26. Частный f-критерий. Чем он отличается от последовательного f-критерия?
- •35. Смысл дифференциального свободного члена и дифференциального углового коэффициента в моделях с фиктивными переменными. ???
- •27. Гомоскедастичности и гетероскедастичности остатков регрессии. Каковы последствия гетероскедастичности остатков регрессии?
- •34. Правило применения фиктивных переменных. Ловушка фиктивных переменных.
- •28. Способы обнаружения гетероскедастичности остатков регрессии. Какие критерии могут быть использованы для проверки гипотезы о гомоскедастичности регрессионных остатков?
- •29. Способы устранения гетероскедастичности остатков регрессии. Метод взвешенных наименьших квадратов.
- •30. Автокорреляция случайных отклонений. Каковы основные причины и последствия автокорреляции?
- •31. Основные методы обнаружения автокорреляции.
45. Проверка значимости коэффициентов в модели бинарного выбора?
Для проверки гипотезы о значимости коэффициентов моделей бинарного выбора применяют:
- тест Вальда
- тест множителей Лагранжа
- отношения правдоподобия
Статистика
Вальда имеет распределение
с
числом степеней свободы, равным
количеству ограничений в модели. Если
наблюдаемое значение превышает
критическое для заданного уровня
значимости, то нулевая гипотеза о
равенстве коэффициентов нулю отклоняется.
В качестве аналога F-теста в линейной регрессии о совместной незначимости всех коэффициентов в бинарных моделях используют LR – тест.
LR – тест имеет распределение с числом степеней свободы, равным количеству независимых переменных в модели. Если наблюдаемое значение превышает критическое, то нулевая гипотеза о незначимости коэффициентов отклоняется в пользу альтернативной.
тест множителей Лагранжа - тест, используемый для проверки ограничений на параметры статистических моделей, оцененных на основе выборочных данных. Является одним из трёх базовых тестов проверки ограничений наряду с тестом отношения правдоподобия и тестом Вальда. Для достоверности выводов требуется достаточно большой объем выборки.
17. Способы обнаружения мультиколлинеарности.
Точных количественных критериев для определения наличия или отсутствия мультиколлинеарности не существует. Тем не менее, ее наличие можно обнаружить с помощью:
1. Анализа корреляционной матрицы между объясняющими переменными и выявлении пар переменных, имеющих высокие коэффициенты корреляции.
2. Расчета множественных коэффициентов корреляции (коэффициентов детерминации) между одной из объясняющих переменных и некоторой группы из них. Наличие высокого множественного коэффициента детермина- ции свидетельствует о мультиколлинеарности.
3. Проверки чувствительности (устойчивости) оценок коэффициентов к небольшим изменениям исходных данных.
4. Исследования матрицы . Если определитель матрицы либо ее минимальное собственное значение близки к нулю, то это говорит о наличии мультиколлинеарности. Об этом же может свидетельствовать и значительное отклонение максимального собственного значения матрицы от ее минимального собственного значения
44. Логит-модели и пробит–модели. Какова интерпретация коэффици-ентов моделей бинарного выбора?
Выбор функции определяет тип бинарной модели. Если используют функцию стандартного нормального распределения, то модель бинарного выбора называют пробит-моделью.
Если используют функцию логистического распределения, то модель бинарного выбора называют логит-моделью.
Эти модели –модификации линейной вероятностной модели. Модификация достигается определенным функциональным преобразованием линейной регрессии с целью определения интервала прогнозных значений вероятности успеха от 0 к 1.
Основные требования к функции преобразования:
монотонно возрастание,
интервал определения значений [0;1],
стремление значений F(z) к 1 при стремлении аргумента z к ∞ .
Логит
модель:
(функция
распределения)
(плотность
распределения)
Пробит-модель:
(функция распределения)
Обе модели являются нелинейными. Оценки коэффициентов моделей логит и пробит НЕЛЬЗЯ интерпретировать как показатели силы связи из-за нелинейности по параметрам. Однако от этих оценок можно легко перейти к относительным показателям силы связи для отдельных факторов, включенных в модель.
.
