- •1.Типы моделей и переменных, применяемых в эконометрике. Чем регрессионная модель отличается от функции регрессии?
- •60. Двухшаговый мнк. Всегда ли можно применить двухшаговый мнк?
- •2. Этапы эконометрического моделирования. Каковы основные причины наличия в регрессионной модели случайного отклонения?
- •59. Косвенный мнк. Всегда ли можно применить косвенный мнк?
- •3.Основные понятия теории вероятностей. Нормальное распределение и связанные с ним χ2 - распределение, распределение Стьюдента и Фишера.
- •58. Идентификация модели в системах одновременных уравнений.
- •4. Генеральная совокупность и выборка. Свойства статистических оценок.
- •57. Структурная и приведенная формы модели в системах одновременных уравнений.
- •56. Типы систем одновременных уравнений. В чем особенность системы рекурсивных уравнений?
- •6. Экономическая интерпретация параметров линейной модели парной регрессии. Какой смысл может иметь свободный коэффициент?
- •55. Arima-модель.
- •7. Статистический смысл коэффициента детерминации. Какова связь между линейным коэффициентом корреляции и коэффициентом регрессии в линейной модели парной регрессии?
- •54. Типы моделей нестационарных временных рядов.
- •8. Баланс для сумм квадратов отклонений результативного признака. В каком случае общая ско равна факторной? Что происходит, когда общая ско равна остаточной?
- •53. Типы моделей стационарных временных рядов.
- •9. Число степеней свободы. Чему равны числа степеней свободы для различных ско в парной регрессии?
- •52. Стационарность временного ряда. Какой стационарный процесс называется «белым шумом»?
- •10. Проверка нулевой гипотезы о статистической незначимости уравнения регрессии в целом. Как используется f-статистика в регрессионном анализе?
- •51. Модель arma. Как интерпретируют параметры моделей авторегрессии?
- •11. Проверка нулевой гипотезы о статистической незначимости параметров уравнения регрессии. Как рассчитать критерий Стьюдента для коэффициента регрессии в линейной модели парной регрессии?
- •50. Прогнозирование на основе трендовой и тренд-сезонной моделей временных рядов. Чему равна сумма сезонных компонент в аддитивной модели временного ряда?
- •12. "Грубое" правило анализа статистической значимости коэффициентов регрессии. Какая связь между tb- и f- статистиками в парной линейной регрессии?
- •49. Этапы построения тренд-сезонных моделей временных рядов. В чем отличие аддитивной и мультипликативной моделей временных рядов?
- •13. Схема определения интервальных оценок коэффициентов регрессии.
- •48. Модель регрессии с фиксированным эффектом и модель регрессии со случайным индивидуальным эффектом. Оценивание модели со случайным индивидуальным эффектом.
- •14. Схема предсказания индивидуальных значений зависимой переменной. В каком месте доверительный интервал прогноза по парной модели является наименьшим?
- •47. Основные понятия и характеристики панельных данных.
- •15. Спецификация эмпирического уравнения линейной модели множественной регрессии. Что измеряют коэффициенты регрессии линейной модели множественной регрессии?
- •46. Прогноз вероятности по логит-модели. Прогноз вероятности по пробит-модели.
- •45. Проверка значимости коэффициентов в модели бинарного выбора?
- •44. Логит-модели и пробит–модели. Какова интерпретация коэффици-ентов моделей бинарного выбора?
- •18. Способы оценивания параметров регрессии в условиях мультиколлинеарности.
- •43. Замещающие переменные в регрессионных моделях.
- •19. Стандартизованный вид линейной модели множественной регрессии: форма записи и практическое применение. Как связаны стандартизованные коэффициенты регрессии с натуральными?
- •42. Исключение существенных переменных и включение несущественных переменных.
- •20. Скорректированный коэффициент детерминации. В чем недостаток использования коэффициента детерминации при оценке общего качества ли-нейной модели множественной регрессии?
- •41. Показатели корреляции при нелинейных соотношениях рассматриваемых признаков. Смысл средней ошибки аппроксимации.
- •21. Назначение частной корреляции при построении модели множе-ственной регрессии.
- •40. Коэффициенты эластичности в нелинейных регрессионных моделях.
- •22. Смысл и определение индекса множественной корреляции.
- •39. Индекс корреляции. Подбор линеаризующего преобразования (подход Бокса-Кокса).
- •23. Способы отбора факторов для включения в линейную модель множественной регрессии.
- •38. Линеаризация нелинейных моделей. Выбор формы модели.
- •24. Проверка обоснованности исключения части переменных из уравнения регрессии.
- •37. Классы и виды нелинейных регрессий.
- •25. Проверка обоснованности включения группы новых переменных в уравнение регрессии.
- •36. Тест Чоу в моделях с фиктивными переменными.
- •26. Частный f-критерий. Чем он отличается от последовательного f-критерия?
- •35. Смысл дифференциального свободного члена и дифференциального углового коэффициента в моделях с фиктивными переменными. ???
- •27. Гомоскедастичности и гетероскедастичности остатков регрессии. Каковы последствия гетероскедастичности остатков регрессии?
- •34. Правило применения фиктивных переменных. Ловушка фиктивных переменных.
- •28. Способы обнаружения гетероскедастичности остатков регрессии. Какие критерии могут быть использованы для проверки гипотезы о гомоскедастичности регрессионных остатков?
- •29. Способы устранения гетероскедастичности остатков регрессии. Метод взвешенных наименьших квадратов.
- •30. Автокорреляция случайных отклонений. Каковы основные причины и последствия автокорреляции?
- •31. Основные методы обнаружения автокорреляции.
13. Схема определения интервальных оценок коэффициентов регрессии.
Прогнозирование
по уравнению регрессии
- подстановка в уравнение регрессии
соответственного значения х.
Такой прогноз
называется точечным.
Он не является точным, поэтому дополняется
расчетом стандартной ошибки
;
получается интервальная
оценка
прогнозного значения
:
|
Преобразуем уравнение регрессии:
ошибка
зависит от ошибки
и ошибки коэффициента регрессии
т.е.
48. Модель регрессии с фиксированным эффектом и модель регрессии со случайным индивидуальным эффектом. Оценивание модели со случайным индивидуальным эффектом.
Модель с фиксированными эффектами - это простая регрессионная модель, оценки параметров тестируют с помощью обычных t- и F – тестов.
Модель с фиксированным эффектом описывается уравнением:
(4)
где
–
параметры, не зависящие от t,
–
независимые
одинаково распределенные случайные
величины
–
предполагаются
независимыми от
для
всех i и t.
Считают, что эту модель целесообразно использовать, если выбирается уникальный набор N регионов.
В
модели со случайными эффектами
моделируется эффект гетерогенности
объектов наблюдения путем введения
неизменного во времени, но специфического
для каждого объекта наблюдения слагаемого
ошибки mi, которое предполагается
независимым от оставшейся части ошибки
Эффекты mi, описывающие гетерогенность, являются случайными переменными в смысле случайности выборки из генеральной совокупности, поскольку каждый объект наблюдения имеет специфический, не зависящий от времени, эффект. Применяется двухшаговая процедура обобщенного метода наименьших квадратов – ВОМНК – выполнимый обобщенный метод наименьших квадратов.
ВОМНК- оценка модели со случайным эффектом:
Фиксированные и случайные эффекты – это случайные переменные. Оба эффекта моделируют ненаблюдаемые различия в объектах наблюдения. Фиксированные эффекты – параметры. Случайные эффекты – слагаемые ошибок. Фиксированные эффекты могут коррелировать с регрессорами. Случайные эффекты предполагаются некоррелированными с регрессорами.
г)
определим предварительные значения
сезонной составляющей как средние
арифметические
из
уровней
для
одноименных месяцев;
д) корректировка первоначальных значений сезонной составляющей с целью соблюдения условия равенства нулю суммы значений сезонной составляющей для полного сезонного цикла:
Таким образом, были последовательно выделены сезонная и трендовая компоненты, в совокупности образующие регулярную составляющую временного ряда:
(3.25)
(для аддитивной модели),
(3.26)
(для мультипликативной модели).
Анализ и прогнозирование временных рядов на основе трендовых или тренд-сезонных моделей во многих случаях оказывается малопродуктивным. Это справедливо, в первую очередь, для рядов, демонстрирующих значительные нерегулярные колебания. В качестве
конкретных примеров можно привести динамику мировых цен на различное сырье или динамику курса американского доллара.
