- •Глава 1. Материаловедение. Структура материалов. 12
- •Глава 2. Стали. 54
- •Глава 3. Чугуны. 110
- •Глава 4. Цветные и редкие металлы и сплавы. 136
- •Глава 5. Сплавы с особыми физическими свойствами. 181
- •Глава 6. Полимеры. 201
- •Глава 7. Керамика. 243
- •Глава 8. Стекло. 265
- •Глава 9. Композиционные материалы. 296
- •Глава 10. Древесные материалы. 316
- •Глава 11. Строительные материалы. 355
- •Глава 12. Наноматериалы. 379
- •Предисловие.
- •Теоретические материалы. Глава 1. Материаловедение. Структура материалов.
- •1.1. Материаловедение, основные понятия.
- •1.2. Количество материалов.
- •1.3. Классификация материалов по назначению.
- •1.4. Агрегатные состояния вещества.
- •1.5. Кристаллическая структура веществ.
- •1.6. Дефекты в кристаллической структуре веществ.
- •1.7. Уровни структуры материалов.
- •1.8. Физико-химический анализ. Диаграммы состояния.
- •1.9. Сплавы, твёрдые растворы.
- •1.10. Химические соединения.
- •1.11. Зернистая структура поликристаллических материалов.
- •1.12. Основные механические свойства материалов.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 2. Стали.
- •2.1. Полиморфизм и свойства железа.
- •2.2. Диаграмма состояния системы Fe – Fe3c.
- •2.3. Сравнение основных свойств сталей и чугунов.
- •2.4. Превращения сталей в твёрдом состоянии.
- •2.5. Стали. Классификация сталей.
- •2.6. Термическая обработка и фазовые превращения в сталях.
- •2.7. Превращения в стали при равновесном нагреве и охлаждении.
- •2.8. Диаграмма изотермических превращений аустенита. Мартенситное превращение.
- •2.9. Основные виды термической обработки стали.
- •2.9.1. Отжиг.
- •2.9.2. Нормализация.
- •2.9.3. Закалка.
- •2.9.4. Отпуск стали.
- •2.10. Углеродистые стали.
- •2.11. Влияние постоянных примесей на углеродистые стали.
- •2.12. Легирующие элементы. Легированные стали, их маркировка.
- •2.13. Жаропрочные и жаростойкие стали.
- •2.14. Коррозионно-стойкие стали.
- •Вопросы для самопроверки.
- •Глава 3. Чугуны.
- •3.1. Чугуны, химические и фазовые составы.
- •3.2. Преимущества чугунов.
- •3.3. Виды чугунов доменного производства.
- •3.4. Классификация и маркировка чугунов.
- •3.5. Модифицирование чугунов.
- •3.6. Белый чугун.
- •3.7. Серый чугун.
- •3.8. Высокопрочный чугун.
- •3.9. Ковкий чугун.
- •3.10. Легированные чугуны.
- •3.11. Другие виды чугунов.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 4. Цветные и редкие металлы и сплавы.
- •4.1. Классификация цветных и редких металлов.
- •4.2. Лёгкие металлы.
- •4.3. Магний и его сплавы.
- •4.4. Применение магния и магниевых сплавов.
- •4.5. Алюминий и его сплавы.
- •4.6. Маркировка алюминиевых сплавов.
- •4.7. Классификация алюминиевых сплавов.
- •4.8. Области применения алюминиевых сплавов.
- •4.9. Титан.
- •4.10. Области применения титана.
- •4.11. Медь и медные сплавы.
- •4.12. Латуни.
- •4.13. Бронзы.
- •4.14. Марки и области применения бронз.
- •4.15. Сплавы меди мельхиор, нейзильбер, куниаль.
- •4.16. Свинец и цинк.
- •4.17. Никель и кобальт.
- •4.18. Олово.
- •4.19. Ртуть.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 5. Сплавы с особыми физическими свойствами.
- •5.1. Металлические проводниковые материалы.
- •5.2. Электромеханические свойства меди и алюминия.
- •5.3. Перспективы развития проводниковых материалов.
- •5.4. Полупроводниковые материалы.
- •5.5. Магнитные материалы.
- •5.6. Тугоплавкие металлы и сплавы.
- •5.7. Сверхпроводящие материалы.
- •5.8. Сплавы с эффектом памяти формы.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 6. Полимеры.
- •6.1. Общие сведения.
- •6.2. Классификация полимеров.
- •6.2.1. Классификация по происхождению.
- •6.2.2. Классификация по структурным признакам.
- •6.3. Общие свойства полимеров.
- •6.3.1. Физические свойства.
- •6.3.2. Механические свойства.
- •6.3.3. Теплофизические свойства.
- •6.3.4. Химические свойства.
- •6.3.5. Электрические свойства.
- •6.3.6. Технологические свойства.
- •6.3.7. Старение полимеров.
- •6.3.8. Радиационная стойкость полимеров. Абляция.
- •6.4. Пластические массы.
- •6.5. Виды пластических масс.
- •6.5.1. Полиэтилен.
- •6.5.2. Полипропилен.
- •6.5.3. Поливинилхлорид.
- •6.5.4. Полистирол.
- •6.5.5. Фторопласты.
- •6.5.6. Полиимид.
- •6.5.7. Полиакрилаты.
- •6.5.8. Фенолформальдегидные смолы (ффс).
- •6.5.9. Эпоксидные смолы.
- •6.5.10. Поликарбонатые полимеры.
- •6.6. Каучук, природный каучук.
- •6.7. Синтетические каучуки.
- •6.8. Резины.
- •6.9. Синтетические эмали, лаки, компаунды.
- •6.10. Полимерные клеи.
- •6.11. Полимеры в медицине.
- •6.12. Биологически разлагаемые пластики на основе природных полимеров.
- •6.13. Неорганический полимер - асбест.
- •Резюме.
- •Вопросы для самоконтроля.
- •Глава 7. Керамика.
- •7.1. Понятие керамики.
- •7.2. Керамика как альтернативный материал.
- •7.3. Состав керамики.
- •7.3.1. Глинистые породы.
- •7.3.2. Свойства глин.
- •7.3.3. Керамика на основе технических оксидов.
- •7.3.4. Керамика на основе бескислородного технического сырья.
- •7.4. Структура керамики.
- •7.5. Свойства керамики.
- •7.6. Керамика на основе глинистого сырья.
- •7.6.1. Фарфор.
- •7.6.2. Фаянс.
- •7.6.3. Гжель.
- •7.6.4.Огнеупорная керамика на основе глин.
- •7.7. Виды технической керамики.
- •7.7.1. Масштабы производства высокотехнологичной керамики.
- •7.7.2. Керамические, пьезокерамические материалы.
- •7.7.3. Керамические материалы с химическими функциями.
- •7.7.4. Керамические материалы для ядерной энергетики.
- •7.7.5. Конструкционная керамика.
- •7.8. Характеристики некоторых керамик.
- •7.8.1. Высокоглиноземистая керамика.
- •7.8.2. Керамика из нитрида и карбида кремния.
- •7.8.3. Другие виды технической керамики.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 8. Стекло.
- •8.1. История стекла.
- •8.2. Отличительные особенности стекла как материала.
- •8.3. Структура веществ в стеклообразном состоянии.
- •8.3.1. Кристаллическое и стеклообразное состояния.
- •8.3.2. Кристаллохимическое описание строения стекол.
- •8.3.3. Кварцевое стекло.
- •8.3.4. Бинарные щелочно-силикатные стекла.
- •8.3.5. Фосфатные стекла.
- •8.3.6. Микронеоднородное строение стекол.
- •8.4. Классификация стекол по составу.
- •8.5. Свойства стекол.
- •8.6. Виды стёкол.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 9. Композиционные материалы.
- •9.1. Строение и признаки композиционных материалов.
- •9.2. Классификация.
- •9.3. Физико-химические основы создания композиционных материалов.
- •9.4. Области применения композиционных материалов.
- •9.5. Виды композиционных материалов.
- •9.5.1. Композиционные материалы с металлической матрицей.
- •9.5.2. Волокнистые композиционные материалы.
- •9.5.3. Дисперсионно-упрочненные композиционные материалы.
- •9.5.4. Композиционные материалы с неметаллической матрицей.
- •9.5.5. Углепласты.
- •9.5.6. Бороволокниты.
- •9.5.7. Органоволокниты.
- •9.6. Получение композиционных материалов на металлической основе, армированных волокнами
- •9.7. Основные методы получения композиционных материалов.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 10. Древесные материалы.
- •10.1. Древесина как материал.
- •10.2. Лиственные и хвойные породы.
- •10.3. Части дерева.
- •10.4. Макроскопическое строение дерева.
- •10.5. Химический состав древесины и её микроскопическое строение.
- •10.6. Физические свойства.
- •10.7. Механические свойства.
- •10.8. Пороки древесины.
- •10.9. Виды хвойных пород.
- •10.10. Виды лиственных пород.
- •10.11. Пиломатериалы и продукты переработки древесины.
- •10.12. Виды изделий из дерева.
- •10.13. Модифицированная древесина.
- •10.14. Термически обработанная древесина (термодревесина).
- •10.15. Области применения древесины.
- •10.16. Скрипка.
- •Резюме.
- •Вопросы для самоконтроля.
- •Глава 11. Строительные материалы.
- •11.1. Виды строительных материалов.
- •11.2. Цемент, портландцемент.
- •11.3. Цементные растворы.
- •11.4. Бетон. Классификация бетонов.
- •11.5. Компоненты бетона.
- •11.6. Марка, класс и прочность бетона.
- •11.7. Лёгкие бетоны.
- •11.8. Тяжелые бетоны.
- •11.9. Кирпич строительный.
- •11.9.1. Размеры кирпича.
- •11.9.2. Пустотность кирпича.
- •11.9.3. Марка кирпича.
- •11.9.4. Морозостойкость кирпича.
- •11.9.5. Строительные кирпичи.
- •11.10. Добавки наноразмерных частиц в бетоны.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 12. Наноматериалы.
- •12.1. Терминология наноразмерных объектов.
- •12.2. Физические причины специфики наноматериалов
- •12.3. Классификация наноматериалов.
- •12.4. Фуллерены, фуллериты.
- •12.5. Углеродные нанотрубки.
- •12.6. Графен.
- •12.7. Размерность процессоров.
- •12.8. Фториды редкоземельных элементов.
- •Резюме.
- •Вопросы для самопроверки.
- •Заключение.
- •Тесты для самоконтроля. Глава 1. Материаловедение. Структура материалов.
- •Глава 2. Стали.
- •Глава 3. Чугуны.
- •Глава 4. Цветные и редкие металлы и сплавы.
- •Глава 5. Сплавы с особыми физическими свойствами.
- •Глава 6. Полимерные материалы.
- •Глава 7. Керамика.
- •Глава 8. Стекло.
- •Глава 9. Композиционные материалы.
- •Глава 10. Древесные материалы.
- •Глава 11. Строительные материалы.
- •Глава 12. Наноструктурированные материалы.
- •Ключи к тестам для самоконтроля.
- •Задания для курсовой работы.
- •Вопросы для подготовки к экзамену.
- •Глоссарий.
- •Список источников информации. Основная литература
6.12. Биологически разлагаемые пластики на основе природных полимеров.
Одна из основных проблем использования полимеров состоит в их медленной деструкции как отходов в окружающей среде. Способность полимерных материалов к биологической деструкции обусловлена главным образом их химическим составом, структурой и свойствами макромолекул.
Экологи всего мира выступают за замену сырьевой базы полимерных материалов с продуктов переработки нефти и газа на натуральные, в частности, растительные компоненты. Пластиковая упаковка из "растительного" сырья (зерновых, древесины, растительных трав) разлагается полностью на безопасные составляющие: воду, биомассу, диоксид углерода и другие естественные природные соединения. Абсолютная экологичность — вот что отличает биологически разлагаемую упаковку от изделий из синтетических полимеров. Человечеству нужны удобрения, а не свалки.
Ещё в начале 30-х годов двадцатого века промышленник Генри Форд финансировал исследования по возможности использования пластиков на основе соевых культур для комплектующих автомобилей. В довоенный период индустрия пластмасс использовала в качестве сырья преимущественно природные ингредиенты — натуральный каучук и нитроцеллюлозу. Пластики на основе нефтепродуктов, поливинилхлорид и полиэтилен, начали широко применяться лишь во время Второй Мировой войны из-за резкой нехватки резины и металла.
Биологически разлагаемые полимеры с активным растительным наполнителем впервые появились в 70 – 80-е годы ХХ века на рынке упаковки промышленно развитых стран и представляли собой композиции крахмала с различными синтетическими полимерами. Крахмал — полисахарид, накапливаемый в процессе жизнедеятельности растений в их клубнях, семенах, стеблях и листьях. Основными источниками для его промышленного производства являются картофель, пшеница, кукуруза, рис. Биосинтетические полимеры удачно сочетали технологичность и высокие эксплуатационные характеристики, присущие синтетическому компоненту, со способностью биологических составляющих разлагаться в природных условиях.
Чаще всего крахмалом модифицировали полиэтилен – пластик, наиболее востребованный в индустрии упаковки, в пищевой и легкой промышленности, а также применяемый в медицине и других отраслях. Для получения термопластичных смесей «полимер – крахмал» полисахарид обычно пластифицируют глицерином и водой. Биологическое разложение композиционного полимера, полученного по такой технологии, начинается с поверхности пленки, обогащенной крахмалом. Для интенсификации биологической деструкции в состав композиций вводят фотосенсибилизаторы или самоокисляющиеся добавки, вызывающие деструкцию полимерной цепи.
На основе композиций полиэтилен – крахмал изготовлен концентрат РоlусleanTM (фирма «Archer Daniels Midland», США) для производства биологически разлагаемых пленок. В состав полимера входит крахмал (40 масс. %), и окисляющая добавка, действующая как катализатор деструкции крахмала на свету и в темноте. Концентрат EcostarplusTM (фирма «St. Sawrence Starch», США), содержит самоокислитель и фотодеградант (органометаллические соли), который синергически взаимодействует с биоразрушающим компонентом — крахмалом. Материал используется как добавка при изготовлении мешков под компост.
Кроме крахмала используют такие органические наполнители как, целлюлозу, амилозу, амилопектин, декстрин, являющиеся питательной средой для микроорганизмов. Синтезирован полиуретан, содержащий низкомолекулярную целлюлозу или амилозу. Методами привитой сополимеризации изготовлены сополимеры полиуретана с крахмалом и целлюлозой, осуществлен синтез сополимера, состоящего из полиэтилакрилата и желатина.
Биологические наполнители подбирают так, чтобы их введение не снижало высокий уровень эксплуатационных характеристик полимеров: прочность, низкую газопроницаемость, экологическую безопасность, хорошую формуемость. Одновременно биологическое разложение наполнителей позволяет деструктировать изделия из пластиков.
Появился специальный термин «biodegradable polymer», который стал неотъемлемой частью «зеленого словаря». Разработка биоразлагающихся полимеров проводится в нескольких направлениях.
Создаются полимерные материалы, имеющие химическую структуру, сходную со структурой природных полимеров. Примером такого синтеза является поддающийся биодеструкции сложный полиэфир алифатического ряда, имеющий химическую структуру, аналогичную структуре полиоксиацетобутирата целлюлозы. Синтетически получены полимеры: аналог лигнина (метоксиоксистирол); биодеструктируемый полиамид; разрушающийся микроорганизмами сложный полиэфир, в состав которого входят молочная и фенилмолочная кислоты.
Разрабатываются полимеры, производимые с использованием возобновляющихся биологических ресурсов. В связи с тем, что традиционные источники сырья для синтеза полимеров нефть и газ ограничены, данное направление, по оценкам специалистов, является наиболее перспективным и экономически выгодным. Производство подобных материалов уменьшит «парниковый эффект», так как выращиваемое исходное растительное сырье поглощает углекислый газ.
Проводится синтез биоразлагаемых полимеров методами биотехнологии. Таким образом, получен микробный полиоксибутират, который по своим пластическим свойствам близок к классическим полимерам – полиэтилену и полипропилену. Полиоксибутират и изделия из него легко поддаются разложению под действием микроорганизмов, а также ферментов плазмы животных тканей. Этот полимер применяют не только в качестве упаковочного материала, отходы которого разрушаются естественной почвенной микрофлорой до мономеров, но и используют в хирургии и фармакологии.
Проводится селекция специальных штаммов микроорганизмов, способных осуществлять деструкцию полимеров. Пока это направление увенчалось успехом только в отношении поливинилового спирта. Японские ученые выделили из почвы бактерии Pseudomonas SP, которые вырабатывают фермент, расщепляющий поливиниловый спирт. После разложения макро-цепи ее фрагменты полностью усваиваются бактериями. Бактерии Pseudomonas добавляют к активному илу на водоочистных сооружениях для более полной очистки сточных вод от этого полимера.
