- •Глава 1. Материаловедение. Структура материалов. 12
- •Глава 2. Стали. 54
- •Глава 3. Чугуны. 110
- •Глава 4. Цветные и редкие металлы и сплавы. 136
- •Глава 5. Сплавы с особыми физическими свойствами. 181
- •Глава 6. Полимеры. 201
- •Глава 7. Керамика. 243
- •Глава 8. Стекло. 265
- •Глава 9. Композиционные материалы. 296
- •Глава 10. Древесные материалы. 316
- •Глава 11. Строительные материалы. 355
- •Глава 12. Наноматериалы. 379
- •Предисловие.
- •Теоретические материалы. Глава 1. Материаловедение. Структура материалов.
- •1.1. Материаловедение, основные понятия.
- •1.2. Количество материалов.
- •1.3. Классификация материалов по назначению.
- •1.4. Агрегатные состояния вещества.
- •1.5. Кристаллическая структура веществ.
- •1.6. Дефекты в кристаллической структуре веществ.
- •1.7. Уровни структуры материалов.
- •1.8. Физико-химический анализ. Диаграммы состояния.
- •1.9. Сплавы, твёрдые растворы.
- •1.10. Химические соединения.
- •1.11. Зернистая структура поликристаллических материалов.
- •1.12. Основные механические свойства материалов.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 2. Стали.
- •2.1. Полиморфизм и свойства железа.
- •2.2. Диаграмма состояния системы Fe – Fe3c.
- •2.3. Сравнение основных свойств сталей и чугунов.
- •2.4. Превращения сталей в твёрдом состоянии.
- •2.5. Стали. Классификация сталей.
- •2.6. Термическая обработка и фазовые превращения в сталях.
- •2.7. Превращения в стали при равновесном нагреве и охлаждении.
- •2.8. Диаграмма изотермических превращений аустенита. Мартенситное превращение.
- •2.9. Основные виды термической обработки стали.
- •2.9.1. Отжиг.
- •2.9.2. Нормализация.
- •2.9.3. Закалка.
- •2.9.4. Отпуск стали.
- •2.10. Углеродистые стали.
- •2.11. Влияние постоянных примесей на углеродистые стали.
- •2.12. Легирующие элементы. Легированные стали, их маркировка.
- •2.13. Жаропрочные и жаростойкие стали.
- •2.14. Коррозионно-стойкие стали.
- •Вопросы для самопроверки.
- •Глава 3. Чугуны.
- •3.1. Чугуны, химические и фазовые составы.
- •3.2. Преимущества чугунов.
- •3.3. Виды чугунов доменного производства.
- •3.4. Классификация и маркировка чугунов.
- •3.5. Модифицирование чугунов.
- •3.6. Белый чугун.
- •3.7. Серый чугун.
- •3.8. Высокопрочный чугун.
- •3.9. Ковкий чугун.
- •3.10. Легированные чугуны.
- •3.11. Другие виды чугунов.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 4. Цветные и редкие металлы и сплавы.
- •4.1. Классификация цветных и редких металлов.
- •4.2. Лёгкие металлы.
- •4.3. Магний и его сплавы.
- •4.4. Применение магния и магниевых сплавов.
- •4.5. Алюминий и его сплавы.
- •4.6. Маркировка алюминиевых сплавов.
- •4.7. Классификация алюминиевых сплавов.
- •4.8. Области применения алюминиевых сплавов.
- •4.9. Титан.
- •4.10. Области применения титана.
- •4.11. Медь и медные сплавы.
- •4.12. Латуни.
- •4.13. Бронзы.
- •4.14. Марки и области применения бронз.
- •4.15. Сплавы меди мельхиор, нейзильбер, куниаль.
- •4.16. Свинец и цинк.
- •4.17. Никель и кобальт.
- •4.18. Олово.
- •4.19. Ртуть.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 5. Сплавы с особыми физическими свойствами.
- •5.1. Металлические проводниковые материалы.
- •5.2. Электромеханические свойства меди и алюминия.
- •5.3. Перспективы развития проводниковых материалов.
- •5.4. Полупроводниковые материалы.
- •5.5. Магнитные материалы.
- •5.6. Тугоплавкие металлы и сплавы.
- •5.7. Сверхпроводящие материалы.
- •5.8. Сплавы с эффектом памяти формы.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 6. Полимеры.
- •6.1. Общие сведения.
- •6.2. Классификация полимеров.
- •6.2.1. Классификация по происхождению.
- •6.2.2. Классификация по структурным признакам.
- •6.3. Общие свойства полимеров.
- •6.3.1. Физические свойства.
- •6.3.2. Механические свойства.
- •6.3.3. Теплофизические свойства.
- •6.3.4. Химические свойства.
- •6.3.5. Электрические свойства.
- •6.3.6. Технологические свойства.
- •6.3.7. Старение полимеров.
- •6.3.8. Радиационная стойкость полимеров. Абляция.
- •6.4. Пластические массы.
- •6.5. Виды пластических масс.
- •6.5.1. Полиэтилен.
- •6.5.2. Полипропилен.
- •6.5.3. Поливинилхлорид.
- •6.5.4. Полистирол.
- •6.5.5. Фторопласты.
- •6.5.6. Полиимид.
- •6.5.7. Полиакрилаты.
- •6.5.8. Фенолформальдегидные смолы (ффс).
- •6.5.9. Эпоксидные смолы.
- •6.5.10. Поликарбонатые полимеры.
- •6.6. Каучук, природный каучук.
- •6.7. Синтетические каучуки.
- •6.8. Резины.
- •6.9. Синтетические эмали, лаки, компаунды.
- •6.10. Полимерные клеи.
- •6.11. Полимеры в медицине.
- •6.12. Биологически разлагаемые пластики на основе природных полимеров.
- •6.13. Неорганический полимер - асбест.
- •Резюме.
- •Вопросы для самоконтроля.
- •Глава 7. Керамика.
- •7.1. Понятие керамики.
- •7.2. Керамика как альтернативный материал.
- •7.3. Состав керамики.
- •7.3.1. Глинистые породы.
- •7.3.2. Свойства глин.
- •7.3.3. Керамика на основе технических оксидов.
- •7.3.4. Керамика на основе бескислородного технического сырья.
- •7.4. Структура керамики.
- •7.5. Свойства керамики.
- •7.6. Керамика на основе глинистого сырья.
- •7.6.1. Фарфор.
- •7.6.2. Фаянс.
- •7.6.3. Гжель.
- •7.6.4.Огнеупорная керамика на основе глин.
- •7.7. Виды технической керамики.
- •7.7.1. Масштабы производства высокотехнологичной керамики.
- •7.7.2. Керамические, пьезокерамические материалы.
- •7.7.3. Керамические материалы с химическими функциями.
- •7.7.4. Керамические материалы для ядерной энергетики.
- •7.7.5. Конструкционная керамика.
- •7.8. Характеристики некоторых керамик.
- •7.8.1. Высокоглиноземистая керамика.
- •7.8.2. Керамика из нитрида и карбида кремния.
- •7.8.3. Другие виды технической керамики.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 8. Стекло.
- •8.1. История стекла.
- •8.2. Отличительные особенности стекла как материала.
- •8.3. Структура веществ в стеклообразном состоянии.
- •8.3.1. Кристаллическое и стеклообразное состояния.
- •8.3.2. Кристаллохимическое описание строения стекол.
- •8.3.3. Кварцевое стекло.
- •8.3.4. Бинарные щелочно-силикатные стекла.
- •8.3.5. Фосфатные стекла.
- •8.3.6. Микронеоднородное строение стекол.
- •8.4. Классификация стекол по составу.
- •8.5. Свойства стекол.
- •8.6. Виды стёкол.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 9. Композиционные материалы.
- •9.1. Строение и признаки композиционных материалов.
- •9.2. Классификация.
- •9.3. Физико-химические основы создания композиционных материалов.
- •9.4. Области применения композиционных материалов.
- •9.5. Виды композиционных материалов.
- •9.5.1. Композиционные материалы с металлической матрицей.
- •9.5.2. Волокнистые композиционные материалы.
- •9.5.3. Дисперсионно-упрочненные композиционные материалы.
- •9.5.4. Композиционные материалы с неметаллической матрицей.
- •9.5.5. Углепласты.
- •9.5.6. Бороволокниты.
- •9.5.7. Органоволокниты.
- •9.6. Получение композиционных материалов на металлической основе, армированных волокнами
- •9.7. Основные методы получения композиционных материалов.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 10. Древесные материалы.
- •10.1. Древесина как материал.
- •10.2. Лиственные и хвойные породы.
- •10.3. Части дерева.
- •10.4. Макроскопическое строение дерева.
- •10.5. Химический состав древесины и её микроскопическое строение.
- •10.6. Физические свойства.
- •10.7. Механические свойства.
- •10.8. Пороки древесины.
- •10.9. Виды хвойных пород.
- •10.10. Виды лиственных пород.
- •10.11. Пиломатериалы и продукты переработки древесины.
- •10.12. Виды изделий из дерева.
- •10.13. Модифицированная древесина.
- •10.14. Термически обработанная древесина (термодревесина).
- •10.15. Области применения древесины.
- •10.16. Скрипка.
- •Резюме.
- •Вопросы для самоконтроля.
- •Глава 11. Строительные материалы.
- •11.1. Виды строительных материалов.
- •11.2. Цемент, портландцемент.
- •11.3. Цементные растворы.
- •11.4. Бетон. Классификация бетонов.
- •11.5. Компоненты бетона.
- •11.6. Марка, класс и прочность бетона.
- •11.7. Лёгкие бетоны.
- •11.8. Тяжелые бетоны.
- •11.9. Кирпич строительный.
- •11.9.1. Размеры кирпича.
- •11.9.2. Пустотность кирпича.
- •11.9.3. Марка кирпича.
- •11.9.4. Морозостойкость кирпича.
- •11.9.5. Строительные кирпичи.
- •11.10. Добавки наноразмерных частиц в бетоны.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 12. Наноматериалы.
- •12.1. Терминология наноразмерных объектов.
- •12.2. Физические причины специфики наноматериалов
- •12.3. Классификация наноматериалов.
- •12.4. Фуллерены, фуллериты.
- •12.5. Углеродные нанотрубки.
- •12.6. Графен.
- •12.7. Размерность процессоров.
- •12.8. Фториды редкоземельных элементов.
- •Резюме.
- •Вопросы для самопроверки.
- •Заключение.
- •Тесты для самоконтроля. Глава 1. Материаловедение. Структура материалов.
- •Глава 2. Стали.
- •Глава 3. Чугуны.
- •Глава 4. Цветные и редкие металлы и сплавы.
- •Глава 5. Сплавы с особыми физическими свойствами.
- •Глава 6. Полимерные материалы.
- •Глава 7. Керамика.
- •Глава 8. Стекло.
- •Глава 9. Композиционные материалы.
- •Глава 10. Древесные материалы.
- •Глава 11. Строительные материалы.
- •Глава 12. Наноструктурированные материалы.
- •Ключи к тестам для самоконтроля.
- •Задания для курсовой работы.
- •Вопросы для подготовки к экзамену.
- •Глоссарий.
- •Список источников информации. Основная литература
4.4. Применение магния и магниевых сплавов.
Н.Н.Бекетов впервые применил магний для вытеснения с его помощью алюминия из расплавленного криолита. Способность порошка магния и тонкой магниевой ленты гореть ослепительно белым пламенем использовали как фотовспышку в фотографии. Магний вытесняет из расплавов многие металлы - магниетермия. Большая химическая активность магния по отношению к кислороду позволяет применять его в качестве раскислителя в производстве стали и цветного литья, а также (в порошкообразном виде) для обезвоживания органических веществ (спирта, анилина и др.). Важное значение в современной химической технологии получил синтез сложных веществ с помощью магнийорганических соединений. Магниевый порошок стали применять также в качестве высококалорийного горючего в современной ракетной технике. Введение небольшого количества металлического магния в чугун позволило значительно улучшить его механические (в частности, пластические) свойства.
Основное преимущество металлического магния – его легкость реализуется и в сплавах магния. Технически чистый магний обладает невысокой механической прочностью, однако введение в него в небольшом количестве других элементов (алюминия, цинка, марганца) может значительно улучшить его механические свойства почти без увеличения удельного веса. На основе этих свойств магния был создан сплав “Электрон”, содержащий, помимо магния, 6 % алюминия, 1 % цинка и 0,5 % марганца. Плотность этого сплава – 1,8 г/см3; прочность на разрыв – до 32 кг/мм2; твердость по Бринеллю составляет 40 – 55 кг/мм2. Этот, а также многие другие сплавы на основе магния широко применялись в авиа- и автостроении. Недостаток сплавов состоит в резком изменении механических свойств при повышении температуры, в виду чего сплавы далее не применялись. Создано множество новых сплавов, отличавшихся значительно лучшими механическими и антикоррозийными свойствами. В эти сплавы вводились небольшие добавки различных элементов – циркония, тория, цинка, серебра, меди, бериллия, титана и других. Подобного рода сплавы нашли широкое применение в авиации и ракетостроении. Кроме того, было создано большое количество разнообразных сплавов, в которых магний не является главной составной частью. Важнейшим из таких сплавов является «магналий» – сплав алюминия с 5 – 30 % магния. Магналий тверже и прочнее чистого алюминия, легче последнего обрабатывается и полируется. Как «магналий», так и «электрон» на воздухе покрываются защитной окисной пленкой, предохраняющей их от дальнейшего окисления. Введение 0,05 % Mg в чугун резко повышает его ковкость и сопротивление разрыву. Многие магниевые детали применяются в настоящее время в самых разных областях электротехники. Небольшой вес изделий, выполненных из магниевых сплавов, явился также важной причиной применения их для изготовления различных бытовых предметов и аппаратуры. Магниевые детали очень хорошо поглощают вибрацию. Их удельная вибрационная прочность почти в 100 раз больше, чем у лучших алюминиевых сплавов, и в 20 раз больше, чем у легированной стали. Это очень важное свойство при создании разнообразных транспортных средств. Магниевые сплавы превосходят сталь и алюминий по удельной жесткости и поэтому применяются для изготовления деталей, подвергающихся изгибающим нагрузкам (продольным и поперечным). Магниевые сплавы немагнитны, совершенно не дают искры при ударах и трении, легко обрабатываются резанием (в 6-7 раз легче, чем сталь, в 2-2,5 раза – чем алюминий). Магний и его сплавы обладают очень высокой хладостойкостью. Область возможного применения магния ограничивается его легкой воспламеняемостью. Магний совершенно устойчив к плавиковой кислоте и другим соединениям фтора, так как при контакте с ним образуется слой MgF2 – прочная сплошная пленка. На этом основано применение магния для изготовления тары и насосов для перекачки плавиковой кислоты. Магний стоек и при контакте с другими галогенами, причем, в отличие от алюминия, он спокойно переносит сухой хлор и стремительно разрушается во влажном.
