- •Глава 1. Материаловедение. Структура материалов. 12
- •Глава 2. Стали. 54
- •Глава 3. Чугуны. 110
- •Глава 4. Цветные и редкие металлы и сплавы. 136
- •Глава 5. Сплавы с особыми физическими свойствами. 181
- •Глава 6. Полимеры. 201
- •Глава 7. Керамика. 243
- •Глава 8. Стекло. 265
- •Глава 9. Композиционные материалы. 296
- •Глава 10. Древесные материалы. 316
- •Глава 11. Строительные материалы. 355
- •Глава 12. Наноматериалы. 379
- •Предисловие.
- •Теоретические материалы. Глава 1. Материаловедение. Структура материалов.
- •1.1. Материаловедение, основные понятия.
- •1.2. Количество материалов.
- •1.3. Классификация материалов по назначению.
- •1.4. Агрегатные состояния вещества.
- •1.5. Кристаллическая структура веществ.
- •1.6. Дефекты в кристаллической структуре веществ.
- •1.7. Уровни структуры материалов.
- •1.8. Физико-химический анализ. Диаграммы состояния.
- •1.9. Сплавы, твёрдые растворы.
- •1.10. Химические соединения.
- •1.11. Зернистая структура поликристаллических материалов.
- •1.12. Основные механические свойства материалов.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 2. Стали.
- •2.1. Полиморфизм и свойства железа.
- •2.2. Диаграмма состояния системы Fe – Fe3c.
- •2.3. Сравнение основных свойств сталей и чугунов.
- •2.4. Превращения сталей в твёрдом состоянии.
- •2.5. Стали. Классификация сталей.
- •2.6. Термическая обработка и фазовые превращения в сталях.
- •2.7. Превращения в стали при равновесном нагреве и охлаждении.
- •2.8. Диаграмма изотермических превращений аустенита. Мартенситное превращение.
- •2.9. Основные виды термической обработки стали.
- •2.9.1. Отжиг.
- •2.9.2. Нормализация.
- •2.9.3. Закалка.
- •2.9.4. Отпуск стали.
- •2.10. Углеродистые стали.
- •2.11. Влияние постоянных примесей на углеродистые стали.
- •2.12. Легирующие элементы. Легированные стали, их маркировка.
- •2.13. Жаропрочные и жаростойкие стали.
- •2.14. Коррозионно-стойкие стали.
- •Вопросы для самопроверки.
- •Глава 3. Чугуны.
- •3.1. Чугуны, химические и фазовые составы.
- •3.2. Преимущества чугунов.
- •3.3. Виды чугунов доменного производства.
- •3.4. Классификация и маркировка чугунов.
- •3.5. Модифицирование чугунов.
- •3.6. Белый чугун.
- •3.7. Серый чугун.
- •3.8. Высокопрочный чугун.
- •3.9. Ковкий чугун.
- •3.10. Легированные чугуны.
- •3.11. Другие виды чугунов.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 4. Цветные и редкие металлы и сплавы.
- •4.1. Классификация цветных и редких металлов.
- •4.2. Лёгкие металлы.
- •4.3. Магний и его сплавы.
- •4.4. Применение магния и магниевых сплавов.
- •4.5. Алюминий и его сплавы.
- •4.6. Маркировка алюминиевых сплавов.
- •4.7. Классификация алюминиевых сплавов.
- •4.8. Области применения алюминиевых сплавов.
- •4.9. Титан.
- •4.10. Области применения титана.
- •4.11. Медь и медные сплавы.
- •4.12. Латуни.
- •4.13. Бронзы.
- •4.14. Марки и области применения бронз.
- •4.15. Сплавы меди мельхиор, нейзильбер, куниаль.
- •4.16. Свинец и цинк.
- •4.17. Никель и кобальт.
- •4.18. Олово.
- •4.19. Ртуть.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 5. Сплавы с особыми физическими свойствами.
- •5.1. Металлические проводниковые материалы.
- •5.2. Электромеханические свойства меди и алюминия.
- •5.3. Перспективы развития проводниковых материалов.
- •5.4. Полупроводниковые материалы.
- •5.5. Магнитные материалы.
- •5.6. Тугоплавкие металлы и сплавы.
- •5.7. Сверхпроводящие материалы.
- •5.8. Сплавы с эффектом памяти формы.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 6. Полимеры.
- •6.1. Общие сведения.
- •6.2. Классификация полимеров.
- •6.2.1. Классификация по происхождению.
- •6.2.2. Классификация по структурным признакам.
- •6.3. Общие свойства полимеров.
- •6.3.1. Физические свойства.
- •6.3.2. Механические свойства.
- •6.3.3. Теплофизические свойства.
- •6.3.4. Химические свойства.
- •6.3.5. Электрические свойства.
- •6.3.6. Технологические свойства.
- •6.3.7. Старение полимеров.
- •6.3.8. Радиационная стойкость полимеров. Абляция.
- •6.4. Пластические массы.
- •6.5. Виды пластических масс.
- •6.5.1. Полиэтилен.
- •6.5.2. Полипропилен.
- •6.5.3. Поливинилхлорид.
- •6.5.4. Полистирол.
- •6.5.5. Фторопласты.
- •6.5.6. Полиимид.
- •6.5.7. Полиакрилаты.
- •6.5.8. Фенолформальдегидные смолы (ффс).
- •6.5.9. Эпоксидные смолы.
- •6.5.10. Поликарбонатые полимеры.
- •6.6. Каучук, природный каучук.
- •6.7. Синтетические каучуки.
- •6.8. Резины.
- •6.9. Синтетические эмали, лаки, компаунды.
- •6.10. Полимерные клеи.
- •6.11. Полимеры в медицине.
- •6.12. Биологически разлагаемые пластики на основе природных полимеров.
- •6.13. Неорганический полимер - асбест.
- •Резюме.
- •Вопросы для самоконтроля.
- •Глава 7. Керамика.
- •7.1. Понятие керамики.
- •7.2. Керамика как альтернативный материал.
- •7.3. Состав керамики.
- •7.3.1. Глинистые породы.
- •7.3.2. Свойства глин.
- •7.3.3. Керамика на основе технических оксидов.
- •7.3.4. Керамика на основе бескислородного технического сырья.
- •7.4. Структура керамики.
- •7.5. Свойства керамики.
- •7.6. Керамика на основе глинистого сырья.
- •7.6.1. Фарфор.
- •7.6.2. Фаянс.
- •7.6.3. Гжель.
- •7.6.4.Огнеупорная керамика на основе глин.
- •7.7. Виды технической керамики.
- •7.7.1. Масштабы производства высокотехнологичной керамики.
- •7.7.2. Керамические, пьезокерамические материалы.
- •7.7.3. Керамические материалы с химическими функциями.
- •7.7.4. Керамические материалы для ядерной энергетики.
- •7.7.5. Конструкционная керамика.
- •7.8. Характеристики некоторых керамик.
- •7.8.1. Высокоглиноземистая керамика.
- •7.8.2. Керамика из нитрида и карбида кремния.
- •7.8.3. Другие виды технической керамики.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 8. Стекло.
- •8.1. История стекла.
- •8.2. Отличительные особенности стекла как материала.
- •8.3. Структура веществ в стеклообразном состоянии.
- •8.3.1. Кристаллическое и стеклообразное состояния.
- •8.3.2. Кристаллохимическое описание строения стекол.
- •8.3.3. Кварцевое стекло.
- •8.3.4. Бинарные щелочно-силикатные стекла.
- •8.3.5. Фосфатные стекла.
- •8.3.6. Микронеоднородное строение стекол.
- •8.4. Классификация стекол по составу.
- •8.5. Свойства стекол.
- •8.6. Виды стёкол.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 9. Композиционные материалы.
- •9.1. Строение и признаки композиционных материалов.
- •9.2. Классификация.
- •9.3. Физико-химические основы создания композиционных материалов.
- •9.4. Области применения композиционных материалов.
- •9.5. Виды композиционных материалов.
- •9.5.1. Композиционные материалы с металлической матрицей.
- •9.5.2. Волокнистые композиционные материалы.
- •9.5.3. Дисперсионно-упрочненные композиционные материалы.
- •9.5.4. Композиционные материалы с неметаллической матрицей.
- •9.5.5. Углепласты.
- •9.5.6. Бороволокниты.
- •9.5.7. Органоволокниты.
- •9.6. Получение композиционных материалов на металлической основе, армированных волокнами
- •9.7. Основные методы получения композиционных материалов.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 10. Древесные материалы.
- •10.1. Древесина как материал.
- •10.2. Лиственные и хвойные породы.
- •10.3. Части дерева.
- •10.4. Макроскопическое строение дерева.
- •10.5. Химический состав древесины и её микроскопическое строение.
- •10.6. Физические свойства.
- •10.7. Механические свойства.
- •10.8. Пороки древесины.
- •10.9. Виды хвойных пород.
- •10.10. Виды лиственных пород.
- •10.11. Пиломатериалы и продукты переработки древесины.
- •10.12. Виды изделий из дерева.
- •10.13. Модифицированная древесина.
- •10.14. Термически обработанная древесина (термодревесина).
- •10.15. Области применения древесины.
- •10.16. Скрипка.
- •Резюме.
- •Вопросы для самоконтроля.
- •Глава 11. Строительные материалы.
- •11.1. Виды строительных материалов.
- •11.2. Цемент, портландцемент.
- •11.3. Цементные растворы.
- •11.4. Бетон. Классификация бетонов.
- •11.5. Компоненты бетона.
- •11.6. Марка, класс и прочность бетона.
- •11.7. Лёгкие бетоны.
- •11.8. Тяжелые бетоны.
- •11.9. Кирпич строительный.
- •11.9.1. Размеры кирпича.
- •11.9.2. Пустотность кирпича.
- •11.9.3. Марка кирпича.
- •11.9.4. Морозостойкость кирпича.
- •11.9.5. Строительные кирпичи.
- •11.10. Добавки наноразмерных частиц в бетоны.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 12. Наноматериалы.
- •12.1. Терминология наноразмерных объектов.
- •12.2. Физические причины специфики наноматериалов
- •12.3. Классификация наноматериалов.
- •12.4. Фуллерены, фуллериты.
- •12.5. Углеродные нанотрубки.
- •12.6. Графен.
- •12.7. Размерность процессоров.
- •12.8. Фториды редкоземельных элементов.
- •Резюме.
- •Вопросы для самопроверки.
- •Заключение.
- •Тесты для самоконтроля. Глава 1. Материаловедение. Структура материалов.
- •Глава 2. Стали.
- •Глава 3. Чугуны.
- •Глава 4. Цветные и редкие металлы и сплавы.
- •Глава 5. Сплавы с особыми физическими свойствами.
- •Глава 6. Полимерные материалы.
- •Глава 7. Керамика.
- •Глава 8. Стекло.
- •Глава 9. Композиционные материалы.
- •Глава 10. Древесные материалы.
- •Глава 11. Строительные материалы.
- •Глава 12. Наноструктурированные материалы.
- •Ключи к тестам для самоконтроля.
- •Задания для курсовой работы.
- •Вопросы для подготовки к экзамену.
- •Глоссарий.
- •Список источников информации. Основная литература
Глава 3. Чугуны.
До 40% веса всех машин мира
приходится на чугунные детали и узлы.
Цели и задачи.
Цель – разобраться, чем чугуны отличаются от сталей, уяснить определения чугунов, виды чугунов, их основные свойства, области применения.
Задачи:
- уяснять определение чугунов, химический и фазовый составы чугунов;
- выяснить в чём преимущества чугуна как конструкционного и функционального материала;
- в каких формах углерод содержится в чугунах;
- виды чугунов, их определения, формы зёрен свободного углерода в каждом из видов чугунов, маркировка, отличительные признаки;
- области применения различных марок чугунов, привести 10 известных Вам примеров чугунных изделий.
3.1. Чугуны, химические и фазовые составы.
Одним из основных конструкционных материалов различного вида машин и оборудования является чугун.
Чугун – сплав железа и углерода, в котором углерода содержится от 2,14 до 6,67 масс %, а также содержатся кремний, марганец, фосфор, технологические примеси, легирующие добавки, вредная примесь сера.
Историческая справка.
В 6 в. до н.э. – появляются первые сведения о чугуне в Китае. Чугун получают из высокофосфористых железных руд, содержащих до 7% P, с низкой температурой плавления. Чугун используют для изготовления отливок различных изделий.
4-5 век до нашей эры - чугун стал известен античным металлургам.
14 в. - производство чугуна в Западной Европе, появление первых доменных печей для выплавки чугуна из руд.
16 в.- производство чугуна в России. Во второй половине 18 века появляются вагранки – специальные печи для плавки чугуна. Литейные цеха отделяются от доменных производств, что положило начало независимому существованию чугунолитейного производства.
Начало 19 века - производство ковкого чугуна.
Вторая четверть 20 века - начинают применять легирование чугуна, что дало возможность существенно повысить его свойства и получать специальные чугуны.
Начало 21 в. - широкое распространение чугуна как конструкционного материала в машиностроительной, металлургической и других отраслях промышленности.
В чугуне максимального содержания углерода можно достигнуть лишь в том случае, когда весь сплав будет представлять собой химическое соединение Fe3C. В большинстве марок чугунов углерода содержится меньше максимальной величины.
Чугун обладает комплексом практически значимых свойств. Чугун имеет высокие прочностные характеристики стабильные во времени, выдерживает циклические нагрузки, для него характерна высокая твёрдость. Чугун имеет высокую прочность при действии сжимающих нагрузок, но менее прочен при действии растягивающих усилий. Детали из чугуна поверхностно окисляются кислородом воздуха и коррозионностойки в массивных изделиях. Чугун обладает высокими литейными свойствами, что определило основной способ получения чугунных изделий путём литья. Сочетание свойств чугуна определяют его использование практически во всех отраслях промышленности. До 40% и более веса всех машин мира приходится на чугунные детали и узлы. Значительна роль чугунов в строительстве и в быту.
В зёренной структуре чугуна имеются следующие составляющие: металлическая основа (феррит, перлит), цементит, углерод. Химический, фазовый, зерненный составы присутствующих в сплаве фаз формируют свойства чугуна и определяют его марку.
Присутствие эвтектики в структуре чугунов обусловливает его использование исключительно в качестве литейного сплава. Твердый чугун легче расплавленного, так что при его затвердевании происходит не сжатие (как обычно при затвердевании металлов и сплавов), а расширение. Эта особенность позволяет изготавливать из чугуна различные отливки, в том числе использовать его как материал для художественного литья. Нормализация чугуна проводится для аустенизации ферритной и ферритно-перлитной матриц и последующего перлитного превращения, что обеспечивает упрочнение. Закалку чугуна на мартенсит с нагревом и охлаждением в воде и масле применяют для повышения прочности и износостойкости. После закалки проводят низкий отпуск для уменьшения закалочных напряжений или высокий отпуск для получения микроструктур сорбита или зернистого перлита, обеспечивающих повышенную вязкость.
Углерод определяет количество графита в чугуне: чем выше его содержание, тем больше образуется графита и тем ниже механические свойства. Образование стабильной фазы графита в чугуне может происходить в результате непосредственного выделения графита из жидкого (твердого) раствора или вследствие распада предварительно образовавшегося цементита. При замедленном охлаждении расплавленного чугуна цементит может подвергнуться разложению Fе3С —> Fe + ЗС с образованием феррита и графита. Процесс образования в чугуне графита называют графитизацией.
Графит повышает износостойкость и антифрикционные свойства чугуна вследствие собственного смазочного действия и повышения прочности пленки смазочного материала. Чугуны с графитом, как мягкой и хрупкой составляющей, обрабатываются резанием с образованием ломкой стружки и чистой поверхности.
Механические свойства чугуна обусловлены, главным образом, количеством и структурными особенностями графитной составляющей. Влияние графитных включений на механические свойства чугуна можно оценить количественно. Чем меньше графитных включений, чем они мельче и больше степень их изолированности, тем выше прочность чугуна при одной и той же металлической основе. Наиболее высокую прочность обеспечивает шаровидная форма графитной составляющей, а для хлопьевидной составляющей характерны высокие пластические свойства. Чугун с пластинчатым графитом можно рассматривать как сталь, в которой графит играет роль надрезов, ослабляющих металлическую основу. Чугун хрупок, при ударе он колется, поэтому из него нельзя изготавливать пружины, рессоры, любые изделия, которые должны работать на изгиб. Прочность чугуна на сжатие в разы больше чем прочность на разрыв, что определяет одно из основных направлений применения чугунов в виде станин станков, оснований, корпусов механизмов. Прочность ряда марок современных специальных чугунов превосходит прочность углеродистой стали.
Компоненты чугуна кремний, фосфор, сера, марганец оказывают существенное влияние на процесс графитизации и соответственно на свойства чугунов.
Кремний оказывает влияние на структуру и свойства чугунов, так как величина температурного интервала, в котором в равновесии с жидким сплавом находятся аустенит и графит, зависит от его содержания. Чем больше содержание кремния, тем шире эвтектический интервал температур. Присутствие кремния способствует процессу графитизации, действуя в том же направлении, что и замедление скорости охлаждения. Изменяя, с одной стороны, содержание в чугуне углерода и кремния, а с другой — скорость охлаждения, можно получить различную структуру металлической основы чугуна.
Сера и марганец являются вредными технологическими примесями, содержание которых в чугунах ограничивают. Сера ухудшает механические и литейные свойства. И сера, и марганец препятствуют графитизации.
Фосфор не влияет на графитизацию, а при повышенном содержании повышает износостойкость чугунов, так как образуются твердые включения фосфидной эвтектики.
Формирование частиц углерода в процессе охлаждения расплава происходит через различные уровни ассоциации атомов углерода. Атомы углерода, радиус которых составляет 0.154нм (1.54А), могут последовательно объединяться в объекты различного масштаба: кластеры, фуллерены, наночастицы, объёмные кристаллы (рис.3.1). Высокие температуры а, следовательно, и энергии атомов определяют преимущественное образование в конечных продуктах термической обработки кристаллов графита.
Рис. 3.1 Структурно-масштабная организация железоуглеродистого расплава.
