Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материаловедение-Из-типографии.docx
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
20.18 Mб
Скачать

2.13. Жаропрочные и жаростойкие стали.

Жаростойкие и жаропрочные стали и сплавы используются во многих отраслях промышленности. Достижения в металловедении жаропрочных сталей и сплавов в значительной степени определяют уровень развития энергомашиностроения, авиационной и ракетно-космической техники (табл. 2.6).

Жаропрочностью называется способность сталей и сплавов выдерживать механические нагрузки при высоких температурах в течение определенного времени. При температурах до 600°C обычно применяют термин теплоустойчивость.

Жаростойкость характеризует сопротивление металлов и сплавов газовой коррозии при высоких температурах. Стали и сплавы, предназначенные для работы при повышенных и высоких температурах, должны, следовательно, обладать не только требуемой жаропрочностью, но и иметь достаточное сопротивление химическому воздействию газовой среды (жаростойкость) в течение заданного ресурса эксплуатации.

Стали и сплавы, предназначенные для работы при повышенных и высоких температурах, подразделяют на группы:

  • теплоустойчивые стали, работающие в нагруженном состоянии при температурах до 600°C в течение длительного времени;

  • жаропрочные стали и сплавы, работающие в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью;

  • жаростойкие стали и сплавы, работающие в ненагруженном или слабонагруженном состоянии при температурах выше 550°C и обладающие стойкостью против химического разрушения поверхности в газовых средах.

К жаропрочным относятся сплавы аустенитного класса на хромоникелевой и хромоникельмарганцевой основах с различным дополнительным легированием. По преимущественному типу упрочнения стали подразделяют на три подгруппы:

  • гомогенные (однофазные) аустенитные стали, жаропрочность которых обеспечивается в основном легированностью твердого раствора;

  • стали с карбидным упрочнением;

  • стали с интерметаллидным упрочнением.

Жаропрочные сплавы разделены по металлу основы: сплавы на основе никеля и кобальта. Эти сплавы чаще всего подразделяют и по способу производства: на деформируемые и литые.

Жаропрочные сплавы работают при различных схемах нагружения: статических растягивающих, изгибающих или скручивающих нагрузках, динамических переменных нагрузках различной частоты и амплитуды, термических нагрузках вследствие изменений температуры, динамическом воздействии скоростных газовых потоков на поверхность. Вследствие этого применяются разнообразные виды испытания на жаропрочность и жаростойкость: испытания на ползучесть и длительную прочность при статическом нагружении, испытания на высокотемпературную и термическую усталость, испытания на газовую коррозию в различных средах, испытания в скоростных газовых потоках.

Основной характеристикой, определяющей работоспособность жаропрочных сталей и сплавов, является жаропрочность (напряжение, вызывающее заданную деформации, не приводящую к разрушению.). Если оговариваются напряжение и время, такая характеристика называется пределом длительной прочности; если оговаривается напряжение, время и деформация - это предел ползучести.

Температурная шкала эксплуатации сталей и сплавов делится на три уровня. Первый уровень - от 20 до 400°С. Конструкции из сталей и высоколегированных сплавов рассчитываются по номинальным допускаемым напряжениям, близким к пределу текучести. Второй уровень - от 400 до 600°С. Конструкции в основном работают в условиях ползучести. Стали для работы при этих температурах относятся к категории теплоустойчивых (High-Temperature Steels), температурный предел их работы - 550-600°С. Третий уровень - выше 600°С. Это группа жаропрочных сталей и сплавов.

Условия нагружения могут быть самыми различными. Крепежные соединения (болты, гайки, резьбы) и пружины, будучи нагруженными, в процессе службы не меняют своих размеров, но с течением времени при высоких температурах имеет место самопроизвольное снижение уровня первоначально заданных механических напряжений (релаксация напряжений). Соответственно, стали и сплавы, сопротивляющиеся спаду напряжений, относятся к релаксационностойким. В отдельных случаях такие стали нормируются специальным стандартом, например, DIN 17240. Примером жаропрочной стали с сопротивлением релаксации является сталь 18Х12ВМБФР.

Среди жаропрочных сталей представлены стали всех уровней легирования и основных структурных классов: перлитные, мартенситные, мартенсито-ферритные (феррита не менее 10%), ферритные, аустенитно-мартенситные. Перлитные стали относятся к категории низколегированных. К высоколегированным относятся стали, содержащие не менее 10% (по массе) легирующих элементов, если считать по верхнему пределу. К сплавам на железо-никель-хромовой основе относятся сплавы, в которых суммарное содержание никеля и железа составляет 65 % в массе. Надо отметить, что деление на стали и железные сплавы носит условный характер и в зарубежных стандартах они отнесены к аустенитным сталям.

К сплавам на основе никеля или кобальта относятся такие композиции элементов, в которых содержание никеля или кобальта порознь или в сумме составляет 55 % (по массе). Для России характерна разработка сталей и сплавов, содержащих минимальное количество никеля, кобальта, молибдена, тантала, ниобия, но зато широко использовались марганец, хром и, в некоторый период, вольфрам. Для зарубежных сталей и сплавов, напротив, характерно широкое использование кобальта, молибдена, ниобия и ванадия. В силу этих причин структурные классы являются базой для сравнения различных марок сталей и сплавов одинакового назначения, что положено в основу сравнения стандартов различных стран.

Сравнение кратковременных механических свойств и показателей жаропрочности отечественных и зарубежных сталей одного и того же класса, несмотря на разницу в подходах к системам легирования, показывает их близость. Различие в свойствах, особенно при испытаниях на длительную прочность и ползучесть, может быть обусловлена не только основным химическим составом, но и особенностями технологии производства.

Ферритные и аустенитно-ферритные стали обладают сравнительно невысокой жаропрочностью. Однако они содержат повышенное количество хрома, который в сочетании с кремнием и алюминием предопределяет высокое сопротивление окисление до температур 1100-1150°C, и устойчивы в серосодержащих средах. Это определило область их применения, несмотря на технологические трудности, связанные с изготовлением оборудования из этих сталей и их высокой склонностью к охрупчиванию в процессе службы. Как жаростойкие, ферритные стали не несут конструкционной нагрузки, кроме собственного веса. До 600°C их прочность несколько ниже, чем мартенсито-ферритных и мартенситных сталей. Аустенито-ферритные стали имеют более высокую прочность, чем ферритные, однако они содержат (хотя и в ограниченных количествах) дорогостоящий никель.

Основным материалом многих стационарных энергетических установок является аустенитная сталь. В таблице 2.6. приведены те марки аустенитных сталей, которые имеют в числе прочих и назначение в качестве конструкционного материала для высокотемпературной области. Причем низкое содержание углерода не способствуют обеспечению жаропрочности, поэтому аустенитные стали с количественным содержанием углерода ниже 0,03 % (по массе) используются только как коррозионностойкие.

Для аустенитных сталей в России характерны те же ограничения, что и для конструкционных: экономия никеля (замена его марганцем), молибдена, ниобия, тантала. В результате серия зарубежных марок аустенитных сталей оказалась отличной от российских добавками именно этих элементов.

Отечественный стандарт содержит ряд оригинальных марок с интерметаллидным упрочнением, не имеющих зарубежных стандартизованных аналогов. Учитывая особенности легирования и структурных факторов, механические свойства аустенитных сталей представлены для трех групп сталей: с карбидным упрочнением, с интерметаллидным упрочнением и с ограниченным эффектом упрочнения за счет дисперсионного твердения.

Остальные стали относятся к умеренно или слабо упрочняемым и их удобно объединять в группу, ограничив минимальные свойства, как это сделано в стандарте А276.

Сплавы на основе никеля (ГОСТ 5632) делятся на две группы: жаростойкие сплавы для работы в качестве слабонагруженных деталей при температурах до 1250°C и жаропрочные дисперсионно-твердеющие сплавы для работы в качестве высоконагруженных деталей (лопатки и турбинные диски) при температурах до 1000°С.

Отечественные марки не имеют полных аналогов зарубежных сплавов по составу.

Жаропрочные и жаростойкие стали и сплавы применяются для деталей и механизмов в условиях действия высоких температур, газов и нагрузок. Важнейшие легирующие элементы в этой стали: хром, никель, алюминий, кремний, титан. Из таких сталей изготавливают лопатки газовых турбин, детали реактивных двигателей, камеры сгорания, детали газопроводных систем, реактивной техники и т. д. Марки таких сталей, например: 1Х14Н18В2Б, 03Х18Н12Т, 12Х25Н16Г7АР, 08Х14Н28ВЗТЗЮР. Марки сплавов: ХН70ВМТЮ, ХН75МБЮ.

Жаропрочные или окалиностойкие стали применяются в условиях повышенных температур (400 – 8500С). Для использования в таких условиях, как правило, применяют марки стали 15Х11МФ, 13Х14Н3В2ФР, 09Х16Н15М3Б. детали, изготовленные из стали одной из этих марок способны противостоять высоким температурам, сохраняя при этом свои свойства. Из такой стали изготавливают трубопроводы высокого давления, лопатки паровых турбин и т.п.

Марочник сталей онлайн (сравнение свойств различных жаропрочных и жаростойких сталей) http://www.splav.kharkov.com/simil2_class.php?type_id=1

Таблица 2.6.

Марки, состав, свойства жаропрочных сталей

Материал

Температура, 0 C

Жаропрочные свойства

Марка,

Группа

сталей

Средняя доля основных легирующих элементов, %

Максимальная рабочая

Начала интенсивного окисления

σв↑

МПа

σ0.2

МПа

0 C

12Х1МФ

Перлитные

0.12 C; 0.1 Cr; 0.3 Mo; 0.2 V

570-585

600

140

84

560

25Х2М1Ф

0.25 C; 2.3 Cr; 1 Mo; 0.4 V

520-550

600

160-220

70

550

15Х5М

Мартенситные

До 0.15 C; 5.2 Cr; 0.5 Mo;

600

650

100

40

540

12Х18Н10Т

Аустенитные

До 0.12 C; 18 Cr; 10 Ni; 0.5 Ti

600

850

80-100

30-40

660

10Х11Н20Т3Р

До 0.10 C; 11 Cr; 20 Ni; 2.6 Ti; 0.02 B

700

850

400

-

700

Легированные стали марок 15Х5М, 16Х11Н2В2МФ, 12Х18Н10Т, 37Х12Н8Г8МБФ используют, если температура эксплуатации будет 10000С и выше. Эти стали обладают еще более высокой окалиностойкостью.

Рис. 2.13. Фотографии газовой турбины и реактивного двигателя, в конструкции которых применяются марки жаропрочных и жаростойких сталей.

К жаростойким сталям относятся стали марок 12Х13, 08Х18Н10Т, 15Х25Т, 10Х23Н18, 08Х20Н14C2, 1Х12МВСФБР, 06Х16Н15М2Г2ТФР-ИД, 12Х12М1БФР-Ш. Из сталей перечисленных марок изготавливают паровые котлы, теплообменники, термические печи, а также аппаратуру, которая будет эксплуатироваться при высоких температурах в агрессивных средах.