- •Глава 1. Материаловедение. Структура материалов. 12
- •Глава 2. Стали. 54
- •Глава 3. Чугуны. 110
- •Глава 4. Цветные и редкие металлы и сплавы. 136
- •Глава 5. Сплавы с особыми физическими свойствами. 181
- •Глава 6. Полимеры. 201
- •Глава 7. Керамика. 243
- •Глава 8. Стекло. 265
- •Глава 9. Композиционные материалы. 296
- •Глава 10. Древесные материалы. 316
- •Глава 11. Строительные материалы. 355
- •Глава 12. Наноматериалы. 379
- •Предисловие.
- •Теоретические материалы. Глава 1. Материаловедение. Структура материалов.
- •1.1. Материаловедение, основные понятия.
- •1.2. Количество материалов.
- •1.3. Классификация материалов по назначению.
- •1.4. Агрегатные состояния вещества.
- •1.5. Кристаллическая структура веществ.
- •1.6. Дефекты в кристаллической структуре веществ.
- •1.7. Уровни структуры материалов.
- •1.8. Физико-химический анализ. Диаграммы состояния.
- •1.9. Сплавы, твёрдые растворы.
- •1.10. Химические соединения.
- •1.11. Зернистая структура поликристаллических материалов.
- •1.12. Основные механические свойства материалов.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 2. Стали.
- •2.1. Полиморфизм и свойства железа.
- •2.2. Диаграмма состояния системы Fe – Fe3c.
- •2.3. Сравнение основных свойств сталей и чугунов.
- •2.4. Превращения сталей в твёрдом состоянии.
- •2.5. Стали. Классификация сталей.
- •2.6. Термическая обработка и фазовые превращения в сталях.
- •2.7. Превращения в стали при равновесном нагреве и охлаждении.
- •2.8. Диаграмма изотермических превращений аустенита. Мартенситное превращение.
- •2.9. Основные виды термической обработки стали.
- •2.9.1. Отжиг.
- •2.9.2. Нормализация.
- •2.9.3. Закалка.
- •2.9.4. Отпуск стали.
- •2.10. Углеродистые стали.
- •2.11. Влияние постоянных примесей на углеродистые стали.
- •2.12. Легирующие элементы. Легированные стали, их маркировка.
- •2.13. Жаропрочные и жаростойкие стали.
- •2.14. Коррозионно-стойкие стали.
- •Вопросы для самопроверки.
- •Глава 3. Чугуны.
- •3.1. Чугуны, химические и фазовые составы.
- •3.2. Преимущества чугунов.
- •3.3. Виды чугунов доменного производства.
- •3.4. Классификация и маркировка чугунов.
- •3.5. Модифицирование чугунов.
- •3.6. Белый чугун.
- •3.7. Серый чугун.
- •3.8. Высокопрочный чугун.
- •3.9. Ковкий чугун.
- •3.10. Легированные чугуны.
- •3.11. Другие виды чугунов.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 4. Цветные и редкие металлы и сплавы.
- •4.1. Классификация цветных и редких металлов.
- •4.2. Лёгкие металлы.
- •4.3. Магний и его сплавы.
- •4.4. Применение магния и магниевых сплавов.
- •4.5. Алюминий и его сплавы.
- •4.6. Маркировка алюминиевых сплавов.
- •4.7. Классификация алюминиевых сплавов.
- •4.8. Области применения алюминиевых сплавов.
- •4.9. Титан.
- •4.10. Области применения титана.
- •4.11. Медь и медные сплавы.
- •4.12. Латуни.
- •4.13. Бронзы.
- •4.14. Марки и области применения бронз.
- •4.15. Сплавы меди мельхиор, нейзильбер, куниаль.
- •4.16. Свинец и цинк.
- •4.17. Никель и кобальт.
- •4.18. Олово.
- •4.19. Ртуть.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 5. Сплавы с особыми физическими свойствами.
- •5.1. Металлические проводниковые материалы.
- •5.2. Электромеханические свойства меди и алюминия.
- •5.3. Перспективы развития проводниковых материалов.
- •5.4. Полупроводниковые материалы.
- •5.5. Магнитные материалы.
- •5.6. Тугоплавкие металлы и сплавы.
- •5.7. Сверхпроводящие материалы.
- •5.8. Сплавы с эффектом памяти формы.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 6. Полимеры.
- •6.1. Общие сведения.
- •6.2. Классификация полимеров.
- •6.2.1. Классификация по происхождению.
- •6.2.2. Классификация по структурным признакам.
- •6.3. Общие свойства полимеров.
- •6.3.1. Физические свойства.
- •6.3.2. Механические свойства.
- •6.3.3. Теплофизические свойства.
- •6.3.4. Химические свойства.
- •6.3.5. Электрические свойства.
- •6.3.6. Технологические свойства.
- •6.3.7. Старение полимеров.
- •6.3.8. Радиационная стойкость полимеров. Абляция.
- •6.4. Пластические массы.
- •6.5. Виды пластических масс.
- •6.5.1. Полиэтилен.
- •6.5.2. Полипропилен.
- •6.5.3. Поливинилхлорид.
- •6.5.4. Полистирол.
- •6.5.5. Фторопласты.
- •6.5.6. Полиимид.
- •6.5.7. Полиакрилаты.
- •6.5.8. Фенолформальдегидные смолы (ффс).
- •6.5.9. Эпоксидные смолы.
- •6.5.10. Поликарбонатые полимеры.
- •6.6. Каучук, природный каучук.
- •6.7. Синтетические каучуки.
- •6.8. Резины.
- •6.9. Синтетические эмали, лаки, компаунды.
- •6.10. Полимерные клеи.
- •6.11. Полимеры в медицине.
- •6.12. Биологически разлагаемые пластики на основе природных полимеров.
- •6.13. Неорганический полимер - асбест.
- •Резюме.
- •Вопросы для самоконтроля.
- •Глава 7. Керамика.
- •7.1. Понятие керамики.
- •7.2. Керамика как альтернативный материал.
- •7.3. Состав керамики.
- •7.3.1. Глинистые породы.
- •7.3.2. Свойства глин.
- •7.3.3. Керамика на основе технических оксидов.
- •7.3.4. Керамика на основе бескислородного технического сырья.
- •7.4. Структура керамики.
- •7.5. Свойства керамики.
- •7.6. Керамика на основе глинистого сырья.
- •7.6.1. Фарфор.
- •7.6.2. Фаянс.
- •7.6.3. Гжель.
- •7.6.4.Огнеупорная керамика на основе глин.
- •7.7. Виды технической керамики.
- •7.7.1. Масштабы производства высокотехнологичной керамики.
- •7.7.2. Керамические, пьезокерамические материалы.
- •7.7.3. Керамические материалы с химическими функциями.
- •7.7.4. Керамические материалы для ядерной энергетики.
- •7.7.5. Конструкционная керамика.
- •7.8. Характеристики некоторых керамик.
- •7.8.1. Высокоглиноземистая керамика.
- •7.8.2. Керамика из нитрида и карбида кремния.
- •7.8.3. Другие виды технической керамики.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 8. Стекло.
- •8.1. История стекла.
- •8.2. Отличительные особенности стекла как материала.
- •8.3. Структура веществ в стеклообразном состоянии.
- •8.3.1. Кристаллическое и стеклообразное состояния.
- •8.3.2. Кристаллохимическое описание строения стекол.
- •8.3.3. Кварцевое стекло.
- •8.3.4. Бинарные щелочно-силикатные стекла.
- •8.3.5. Фосфатные стекла.
- •8.3.6. Микронеоднородное строение стекол.
- •8.4. Классификация стекол по составу.
- •8.5. Свойства стекол.
- •8.6. Виды стёкол.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 9. Композиционные материалы.
- •9.1. Строение и признаки композиционных материалов.
- •9.2. Классификация.
- •9.3. Физико-химические основы создания композиционных материалов.
- •9.4. Области применения композиционных материалов.
- •9.5. Виды композиционных материалов.
- •9.5.1. Композиционные материалы с металлической матрицей.
- •9.5.2. Волокнистые композиционные материалы.
- •9.5.3. Дисперсионно-упрочненные композиционные материалы.
- •9.5.4. Композиционные материалы с неметаллической матрицей.
- •9.5.5. Углепласты.
- •9.5.6. Бороволокниты.
- •9.5.7. Органоволокниты.
- •9.6. Получение композиционных материалов на металлической основе, армированных волокнами
- •9.7. Основные методы получения композиционных материалов.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 10. Древесные материалы.
- •10.1. Древесина как материал.
- •10.2. Лиственные и хвойные породы.
- •10.3. Части дерева.
- •10.4. Макроскопическое строение дерева.
- •10.5. Химический состав древесины и её микроскопическое строение.
- •10.6. Физические свойства.
- •10.7. Механические свойства.
- •10.8. Пороки древесины.
- •10.9. Виды хвойных пород.
- •10.10. Виды лиственных пород.
- •10.11. Пиломатериалы и продукты переработки древесины.
- •10.12. Виды изделий из дерева.
- •10.13. Модифицированная древесина.
- •10.14. Термически обработанная древесина (термодревесина).
- •10.15. Области применения древесины.
- •10.16. Скрипка.
- •Резюме.
- •Вопросы для самоконтроля.
- •Глава 11. Строительные материалы.
- •11.1. Виды строительных материалов.
- •11.2. Цемент, портландцемент.
- •11.3. Цементные растворы.
- •11.4. Бетон. Классификация бетонов.
- •11.5. Компоненты бетона.
- •11.6. Марка, класс и прочность бетона.
- •11.7. Лёгкие бетоны.
- •11.8. Тяжелые бетоны.
- •11.9. Кирпич строительный.
- •11.9.1. Размеры кирпича.
- •11.9.2. Пустотность кирпича.
- •11.9.3. Марка кирпича.
- •11.9.4. Морозостойкость кирпича.
- •11.9.5. Строительные кирпичи.
- •11.10. Добавки наноразмерных частиц в бетоны.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 12. Наноматериалы.
- •12.1. Терминология наноразмерных объектов.
- •12.2. Физические причины специфики наноматериалов
- •12.3. Классификация наноматериалов.
- •12.4. Фуллерены, фуллериты.
- •12.5. Углеродные нанотрубки.
- •12.6. Графен.
- •12.7. Размерность процессоров.
- •12.8. Фториды редкоземельных элементов.
- •Резюме.
- •Вопросы для самопроверки.
- •Заключение.
- •Тесты для самоконтроля. Глава 1. Материаловедение. Структура материалов.
- •Глава 2. Стали.
- •Глава 3. Чугуны.
- •Глава 4. Цветные и редкие металлы и сплавы.
- •Глава 5. Сплавы с особыми физическими свойствами.
- •Глава 6. Полимерные материалы.
- •Глава 7. Керамика.
- •Глава 8. Стекло.
- •Глава 9. Композиционные материалы.
- •Глава 10. Древесные материалы.
- •Глава 11. Строительные материалы.
- •Глава 12. Наноструктурированные материалы.
- •Ключи к тестам для самоконтроля.
- •Задания для курсовой работы.
- •Вопросы для подготовки к экзамену.
- •Глоссарий.
- •Список источников информации. Основная литература
12.5. Углеродные нанотрубки.
Углеродные нанотрубки - протяжённые структуры, состоящие из свёрнутых гексагональных сеток с атомами углерода в узлах, были открыты в 1991 году японским исследователем Иджимой. Углеродные нанотрубки —цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной от микрона до тысячи микрон, состоят из одной или нескольких свернутых в трубку гексагональных графитовых плоскостей (графенов) и заканчиваются обычно полусферической головкой.
Первая нанотрубка была получена путём распыления графита в электрической дуге. Измерения, выполненные с помощью электронного микроскопа, показали, что диаметр таких нитей составляет нанометры, десятки нанометров, а длина от десятков нанометров до нескольких микрон (рис.12.10). Имеются сведения получения нанотрубок длинной до 2мм и более.
|
|
Рис.12.10. Фотографии углеродных нано трубок, выполнены на просвечивающем электронном микроскопе фирмы JEOL. Масштаб шкалы 60 нм.(правый рисунок) |
|
Разрезав нанотрубку вдоль продольной оси, было обнаружено, что она состоит из одного или нескольких слоёв, каждый из которых представляет гексагональную сетку графита, основу которой составляют шестиугольники с расположенными в вершинах углов атомами углерода (рис. 12.10). Во всех случаях расстояние между слоями равно 0,34 нм, то есть такое же, как и между слоями в кристаллическом графите. Верхние концы трубочек закрыты полусферическими крышечками, каждый слой которых составлен из шести- и пятиугольников, напоминающих структуру половинки молекулы фуллерена. Нанотрубки бывают однослойные и многослойные, прямые и спиральные.
Структура нанотрубок. Идеальная нанотрубка - это цилиндр, полученный при свертывании плоской гексагональной сетки графита без швов. Взаимная ориентация гексагональной сетки графита и продольной оси нанотрубки определяет очень важную структурную характеристику нанотрубки - хиральность. Хиральность характеризуется 2 целыми числами (m, n), которые указывают местонахождение того шестиугольника сетки, который в результате свёртывания должен совпасть с шестиугольником, находящимся в начале координат. Хиральность нанотрубки может быть также однозначно определена углом a, образованным направлением сворачивания нанотрубки и направлением, в котором соседние шестиугольники имеют общую сторону. Имеется множество вариантов свёртывания нанотрубок, но среди них выделяются те, в результате реализации которых не происходит искажения структуры гексагональной сетки. Этим направлениям отвечают углы, а=0 и а=300, что соответствует хиральности (m, 0) и (2n, n).
|
|
Рис.12.11. Примеры нанотрубок, схематические изображения.
Получение нанотрубок. В настоящее время наиболее распространённым является метод термического распыления графитовых электродов в плазме дугового разряда. Процесс синтеза осуществляется в камере, заполненной гелием под давлением около 500торр (Торр - внесистемная единица давления, равная EQ\f (1;760) части физической (нормальной) атмосферы, то есть 101325:760 = 133,322 (н/м2, или паскаля), названный в честь Э. Торричелли). При горении плазмы происходит интенсивное термическое испарение анода, при этом на торцевой поверхности катода образуется осадок, формирующий нанотрубки углерода.
Максимальное количество нанотрубок образуется тогда, когда ток плазмы минимален и его плотность около 100А/см2. В экспериментальных установках напряжение между электродами составляет около 15 – 25В, ток разряда несколько десятков ампер, расстояние между концами графитовых электродов 1 - 2 мм. В процессе синтеза ~ 90% массы анода осаждается на катоде. Образующиеся многочисленные нанотрубки имеют длину около 40 мкм. Они нарастают на катоде перпендикулярно плоской поверхности его торца и собраны в цилиндрические пучки диаметром около 50 мкм. Пучки нанотрубок регулярно покрывают поверхность катода, образуя структуру, схожую с сотами.
Для разделения компонентов полученный осадок помещают в метанол и обрабатывают ультразвуком. В результате получается суспензия, которая после добавления воды подвергается разделению в центрифуге. Крупные частицы прилипают к стенкам центрифуги, а нанотрубки остаются плавающими в суспензии. Затем нанотрубки промывают в азотной кислоте и просушивают в газообразном потоке кислорода и водорода в соотношении 1:4 при температуре 750°C в течение 5 минут.
Алмаз, графит
|
Графен
|
Графитовая нанотрубка
|
Фуллерен
|
Рис. 12. 12. Изменение размерности углеродных образований.
|
|
В результате такой обработки получается лёгкий пористый материал, состоящий из многочисленных нанотрубок со средним диаметром 20 нм и длиной 10 мкм.
Возможности использования нанотрубок в молекулярной электронике неизмеримо возрастают при переходе от чисто углеродных к химически модифицированным нанотрубкам. Например, благодаря наличию цилиндрической полости внутрь углеродных нанотрубок, как было сказано, удается внедрить различные элементы, включая тяжелые металлы. Возможно добавление аддендов на внешнюю поверхность трубки.
Металлизированные нанотрубки. Расчеты металлизированных нанотрубок потребовали разработки нового квантово-химического метода (названного методом линеаризованных присоединенных цилиндрических волн). В этом методе принимается допущение, что система заключена в непроницаемый потенциальный барьер цилиндрической формы, причем в области атомов электронный потенциал сферически симметричен (практически совпадает с атомным), а в межатомном пространстве постоянен (рис.12.13). Тогда электронный спектр системы определяется свободным движением электронов в межатомном пространстве и рассеянием на атомных центрах.
|
Рис.12.13. Легированная металлом (цветные шарики) углеродная нанотрубка внутри цилиндрического потенциального барьера. I - область постоянного межатомного потенциала, II - область атомного потенциала. (При расчетах атомные сферы считаются касающимися друг друга.) |
Как показали расчеты, внедрение переходных металлов в углеродные нанотрубки должно приводить к резкому возрастанию проводимости как полупроводниковых нанотрубок (за счет появления в запрещенной зоне электронных состояний металла), так и металлических (за счет повышения плотности состояний вблизи уровня Ферми - энергия, отделяющая занятые состояния от свободных). Все бор-азотные нанотрубки, в отличие от углеродных, независимо от их геометрии исходно должны быть широкозонными полупроводниками.
Исходная однотипность электронных свойств бор-азотных нанотрубок может быть полезна в технологическом плане, так как облегчает изготовление нанопроводов с более воспроизводимыми характеристиками. Если одну половину полупроводниковой нанотрубки заполнить металлом, а вторую оставить нетронутой, мы опять получим молекулярный гетеропереход металл-полупроводник. В случае бор-азотной нанотрубки это будет гетеропереход широкозонный полупроводник-металл, на основе которого можно конструировать нанодиоды и другие элементы, способные функционировать при высоких температурах.
Нанотрубки с аддендами. Гетеропереход может образоваться и при фторировании нанотрубок. Учет стерических и p-электронных взаимодействий при расчетах полной энергии фторированных нанотрубок показал, что присоединение атомов F с внешней стороны нанотрубки более выгодно, чем с внутренней. При этом атомы фтора должны присоединяться сначала к открытым концам нанотрубок, а затем выстраиваться вдоль образующей. При добавлении фтора на внешнюю поверхность трубки меняется сетка p-связей, а значит - электрические и другие физические свойства.
Освоение технологии получсения однослойных и многослойных углеродных нанотрубок позволяет создавать нанотрубки как с металлическим типом проводимости, так и с заданной запрещенной зоной. Соединение двух таких трубок будет образовывать диод, а трубка, лежащая на поверхности окисленной кремниевой пластины – канал полевого транзистора. Набор нанотрубок с заданным внутренним диаметром могут служить основой для создания молекулярных сит высокой селективности и газопроницаемости. Композиционные материалы с использованием углеродных нанотрубок будут иметь весьма важное значение в качестве защитных экранов от излучения и других важных конструкционных материалов ответственного назначения.
Связи между атомами углерода в графитовом листе являются самыми сильными среди известных, поэтому бездефектные углеродные трубки в 1.4 раза прочнее стали и приблизительно в четыре раза легче стали! Одна из важнейших задач технологии в области новых углеродных материалов заключается в создании нанотрубок "бесконечной" длины. Из таких трубок можно изготовлять легкие композитные материалы предельной прочности для нужд техники нового века. Это силовые элементы мостов и строений, несущие конструкции компактных летательных аппаратов, элементы турбин, силовые блоки двигателей с предельно малым удельным потреблением топлива и т.п. В настоящее время научились изготавливать трубки длиной в десятки микрон при диаметре порядка одного нанометра. В отдельных опытах получены нанотрубки длиной до нескольких мм.
Одностенные нанотрубки (индивидуальные, в небольших сборках или в сетях) являются миниатюрными датчиками для обнаружения молекул в газовой среде или в растворах с ультравысокой чувствительностью – при адсорбции на поверхности нанотрубки молекул ее электросопротивление, а также характеристики нанотранзистора могут изменяться. Такие нанодатчики могут использоваться для мониторинга окружающей среды, в военных, медицинских и биотехнологических применениях.
Основными областями в которых найдут применение нанотрубки являются следующие направления.
Механические применения: сверхпрочные нити, композитные материалы, нановесы.
Применения в микроэлектронике: транзисторы, нанопровода, прозрачные проводящие поверхности, топливные элементы.
Капиллярные применения: капсулы для активных молекул, хранение металлов и газов, нанопипетки.
Оптические применения: дисплеи, светодиоды.
Медицина.
Сенсоры.
